
Semantic Tuplespace

Liangzhao Zeng1, Hui Lei1, and Badrish Chandramouli2

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
{lzeng, hlei}@us.ibm.com

2 Duke University, Durham, North Carolina 27708-0129
badrish@cs.duke.edu

Abstract. The tuplespace system is a popular cooperative communication
paradigm in service-oriented computing. Tuple matching in existing tuplespace
systems is either type-based or object-based. It requires that both tuple writers and
readers adhere to the same approach of information organization (i.e., same termi-
nologies or class hierarchy). Further, it examines the value of the tuple contents
only. As such, these tuplespace systems are inadequate for supporting commu-
nication among services in heterogeneous and dynamic environments, because
services are forced to adopt the same approach to organizing the information ex-
changed. In order to overcome these limitations and constraints, we propose a
semantic tuplespace system. Our system uses ontologies to understand the se-
mantics of tuple contents, and correlates tuples using relational operators as part
of tuple matching. Therefore, by engineering ontologies, our system allows dif-
ferent services to exchange information in their native formats. We argue that a
semantic tuplespace system like ours enables flexible and on-demand communi-
cation among services.

1 Introduction

The tuplespace paradigm is a simple, easy to use, and efficient approach for supporting
cooperative communication among distributed services. Typically, a tuplespace system
contains three roles: (i) tuple writers, who write tuples into sharespace, (ii) tuple read-
ers, who read/take tuples that they are interested in, by specifying templates, and (iii)
the tuplespace server, who is responsible for managing the sharespace and routing the
tuples from writers to readers. The earliest tuplespace systems were type-based. A tu-
ple in Linda [4] is a series of typed fields. For example, a tuple can be t(’Sports
Car’, 400,000). Tuple matching is based on a template that consists of a se-
ries of typed fields or type definitions. For instance, a template can be ϕ(〈’Sports
Car’〉, 〈?float〉), where typed field (e.g., 〈’Sports Car’〉) requires value iden-
tical matching (e.g., string that is the same as ’Sports Car’); while the type defi-
nition (e.g., 〈?float〉) only concerns the type matching (e.g., any float value). Obvi-
ously, such systems have limitations on specifying filtering criteria: either exact value
or type matching. For above example, any tuples with type float in the second field can
satisfy the template’s requirement on second field, regardless of the value of the field.

Consequently, as an improvement to type-based solutions, object-based tuplespace
systems have been proposed [10]. Instead of exact type matching, these systems

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 366–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantic Tuplespace 367

enable object compatibility based type matching. Further, these systems allow tu-
ple readers to specify queries on fields, which provides the flexibility of choos-
ing filtering criteria along multiple dimensions. For example, the template in the
vehicle dealer example may be refined as ϕ

′
(〈SportsCar〉, 〈CarInsurance,

CarInsurance.premium < 2000〉). This template indicates that those tu-
ples that first field’s type is SportsCar or descendent of SportsCar (e.g.,
USSportsCar, if USSportsCar is a descendent class of SportsCar in the im-
plementation of the class hierarchy) and the second field’s type is CarInsurance or
descendent of CarInsurance and the premium is less than 2000, will be delivered
to the reader.

Considering the adaptability and flexibility requirements from services that operate
in dynamic environments, we argue that both type-based and object-based tuplespace
systems are not sufficient in two aspects:

– Value-based matching. Currently, in object-based tuplespace systems, the type
matching is based on object compatibility, wherein the relationship among the ob-
jects is deduced from the implementation of the class hierarchy. Without semantic
support to understand the meaning of the field, the matching algorithm assumes
that both tuple writers and readers share the same implementation of class hierar-
chy. Such an assumption is hard to enforce when the relationship of tuple writers
and readers is dynamically formed.

– One-to-one matching. Presumably, services read multiple tuples in a transaction
as no single tuple can provide all the necessary fields, when they interact with a
collection of partner services. However, in current tuplespace systems, correlation
of interrelated tuples is not supported, which requires custom implementation by
application programmers. The implementation of tuple correlation is often a chal-
lenging and involving task. Further, it requires that the application programmers
be aware of all the tuples that are provided by partner services in advance at de-
velopment time. Such a requirement is impractical when a service has a dynamic
collection of partners.

In this paper, we introduce a semantic tuplespace system. Our system enables se-
mantic tuple matching, wherein semantic knowledge is maintained in ontologies. This
releases the constraints in object-based tuplespace systems that writers, readers and the
server must share the same implementation of class hierarchy. Unlike traditional tu-
plespace systems, tuple correlation in our system is performed by the tuplespace server,
which is transparent to tuple readers. Therefore, services in dynamic environments be-
come easier to develop and maintain as tuple semantic transformation and correlation
can be provided as part of the tuplespace system. In a nutshell, the salient features and
contributions of our system are:

1. Efficient semantic tuple matching. A naive approach to enabling semantic tuple
matching is term generation, in which more generic fields (i.e., objects) are gener-
ated based on ontologies. For example, from an object of sportsCar, the system
can generate a more generic object about car. Such an approach is clearly very in-
efficient, since it generates unnecessary redundant tuples. In our framework, instead
of adopting term generation approach, the system enables semantic tuple routing by
rewriting templates, wherein no redundant tuples need to be generated.

368 L. Zeng, H. Lei, and B. Chandramouli

2. Semantic-based, correlation matching. With ontology support, it is possible for the
system to conduct tuple correlation based on tuple content semantics using rela-
tional operators. For example, two tuples in a sharespace can be correlated to one
by the join operator and then delivered to tuple readers. We extend tuple matching
in traditional tuplespace systems with two kinds of correlation matchings, namely
those based on common fields across tuples and those based on attribute depen-
dence. Correlation matching can automatically search available tuples which can
only provide partial information required by a read/take template, and correlate
them to one tuple that contains all the fields required by the template.

The remainder of this paper is organized as follows: Section 2 introduces some im-
portant concepts and presents the overview of the semantic tuplespace system. Sec-
tion 3 and 4 discuss two main features of the proposed system. Section 5 illustrates
some aspects of the implementation. Finally, Section 6 discusses some related work
and Section 7 provides concluding remarks.

2 Preliminaries

In this section, we first introduce some important concepts in ontology, and then present
the proposed system architecture of the semantic tuplespace system. Finally, we outline
the tuple matching algorithm.

2.1 Ontology

In our system, we adopt an object-oriented approach to the definition of ontology, in
which the type is defined in terms of classes1 and an instance of a class is consid-
ered as an object. In the subsection, we present a formal description of class and ob-
ject. It should be noted that this ontology formulation can be easily implemented using
OWL [11] framework. We will present details on how to use ontology to perform se-
mantic matching and correlation matching in following sections.

Definition 1 (Class). A class C is defined as the tuple C =〈N, S, P, R, F 〉, where

– N is the name of the class;
– S is a set of synonyms for the name of class, S = {s1, s2, ..., sn} ;
– P is a set of properties, P = {p1, p2, ..., pn}. For pi ∈ P , pi is a 2-tuple in form

of 〈T, Np〉, where T is a basic type such as integer, or a class in an ontology, Np is
the property name.

– R is a set of parent classes, R = {C1, C2, ..., Ck};
– F is a set of dependence functions for the properties, F = {f1, f2, ..., fl}. Each

function is in form of fj(p
′
1, p

′
2, ..., p

′
m) and associated with a predicate c, where

the output of fj is a property pi of class C and p
′
i is property from a class other

than C and the predicate c is used to correlate p
′
i. �

1 Some notations used in this paper are summarized in Table 1.

Semantic Tuplespace 369

C

Cn1 Cni CnmC11 C1i C1m

f1
fi fn

p1 pi pn

Fig. 1. A Dependence Tree of the Class C

In the definition of class, the name, synonyms, and properties present the con-
notation of a class; while parent classes and dependence functions specify rela-
tionships among the classes, i.e., present the denotation of a class. In particular,
dependence functions provide information for searching candidate tuples for corre-
lation. A class may have parent classes for which it inherits attributes. For example,
class sportsCar’s parent class is Car, so the class sportsCar inherits all the
attributes in class Car.

Other than inheritance relationships, different classes may have value depen-
dence on their properties. In our framework, dependence functions are used to in-
dicate the value dependence among the different classes’ properties. For exam-
ple, we have three classes ShippingDuration, Arrival and Departure.
In ShippingDuration, the attribute duration has a dependence func-
tion minus(Arrival.timeStamp, Departure.timeStamp), where the pred-
icate is ShippingDuration.shippingID = Arrival.shippingID =
Departure.shippingID.

Based on dependence functions, a dependence tree can be constructed for each
class. Assuming that the class C has a set of dependence functions F , a dependence
tree can be generated as in Figure 1. There are three kinds of nodes in a depen-
dence tree, namely class node, operator node and dependant class node. It should
be noted that the depended class node may also have its own dependence tree (e.g.,
C11). A class C’s complete dependence set (denoted as DC) is defined as a collec-
tion of depended classes that can be used to calculate the value of the property. For
example, the set {C11, C12, ..., C1m} is a complete dependence set of the class C’s
property p1.

Once a class is defined, instances of the class can be created as objects (See 2). In
the definition, the ID is the universal identifier for an object, while V gives values of
attributes in the object.

Definition 2 (Object). An object o is a 3-tuple〈ID, Nc, V 〉, o is an instance of a class
C, where

– ID is the id of the object;
– Nc is the class name of C;
– V = {v1, v2, ..., vn}, are values according to the attributes of the class C. For

vi ∈ V , vi is a 2-tuple in form of 〈Np, Vp〉 , where Np is the property name, Vp is
the property value. �

370 L. Zeng, H. Lei, and B. Chandramouli

Ontology Engine

TupleSpace

Server

write read/take
Tuple Writer Tuple Reader

Sharespace

Ontology Repository

Tuple Tuple

Fig. 2. Semantic Tuplespace System Architecture

Table 1. Notations

Notation Definition

C a class
C a set of classes
pi a class property
fi a dependency function

DC a complete dependence set for class C
o an object

t(o1, o2, ..., on) a tuple
Ct the set consists of all t’s field classes
T a set of tuples

CT the set consists of all field classes of tuples in T

ϕ(t1, t2, ..., tn) a read/take template
Cϕ the set consists of all the field classes required by template ϕ
qi a query predicate

ti=〈Ci, qi〉 a formal field in template

2.2 System Architecture

Our semantic tuplespace system (see Figure 2) consists of an ontology repository, an on-
tology engine, tuple writers, tuple readers, sharespace and a tuplespace server. A tuple
in the semantic tuplespace system is denoted as t(o1, o2, ..., on), where each field in a
tuple is an object oi

2 and the class is Ci. An example of a tuple can be ts(sportsCarA,
carInsuranceB, carFinanceC), which contains three objects.

As in the traditional tuplespace system, the basic operations in semantic tuplespace
include write, read and take. For tuple providers, the write operation is used to save
tuples into the sharespace. For tuple consumers, the operations can be either read or
take. The difference between read and take is that after a take the tuple is removed
from the sharespace, while read leaves the tuple object in sharespace.

When performing a read/take operation, a template ϕ(t1, t2, ..., tn) that defines tu-
ple matching conditions is specified . For each ti in ϕ, it can be either formal or non-
formal field. A formal field is specified as a pair 〈Ci, qi〉, where the Ci specifies the
class of the field and the qi is a query predicate (a boolean expression of attributes in
class Ci). A non-formal field is specified as 〈oi〉 that indicates expecting an identical

2 In the rest of the paper, we use term object and field interchangeably.

Semantic Tuplespace 371

Table 2. Examples

Entity Example

template ϕs(〈 Car, Car.price.amount< 5000 〉,
〈carInsuranceB〉, 〈CarFinance, null〉)

candidate tuple t(sportsCarA, carInsuranceB, carFinanceC)
tuple set Tk={t1 , t2}, where

t1(sportsCarA, sportsCarInsuranceB),
t2(sportsCarA, carFinanceC)

generated template for t1 ϕ1(〈SportsCar, SportsCar.price.amount<5000 〉,
〈carInsuranceB〉)

generated template for t2 ϕ2(〈SportsCar, SportsCar.price.amount<5000 〉,
〈CarFinance, null〉)

tuple set Tf ={t1 , t2, t3, t4 }, where
t1(sportsCarA, licenceB), t2(licenceB, carOwnerC),
t3(carOwnerC, carInsuranceD), t4(sportsCarA, carFinanceE)

object as oi is contained in matched tuples. There are two options in read/take oper-
ation: all or any. Option all returns all the matched tuples, while option any only
returns one of the matched tuples. In the rest of the paper, for sake of presentation, we
only discuss option all; however, in our design, we support both options.

An example of template can be ϕs (see Table 2). In this example, the first field
required by the template is an object of class Car, where the associated query
predicate is Car.price.amount<5000. The second field is non-formal: object
carInsuranceB, indicating that the tuples need to provide identical information as
specified in the object. Actually, the non-formal field 〈oi〉 can be converted to a formal
field as 〈C′,

∧n
j=0(C

′.pj = oi.pj)〉, where object oi’s class is C′ that has n properties
pj . As such, in the rest of this paper, we only discuss the case of formal field.

2.3 Tuple Matching in Semantic Tuplespace System

By introducing ontologies into tuplespace system, other than exact matching, we extend
the tuple matching algorithm with two extra steps: semantic matching and correlation
matching. Therefore, three steps are involved in our matching algorithm:-

– Step 1. Exact Matching. The first step is to find exact matches, which returns
tuples that have exactly the same field classes as the template;

– Step 2. Semantic Matching. The system searches tuples that have field classes
which are semantically compatible with the template and delivers tuples if the tu-
ples’ contents can satisfy the filtering conditions;

– Step 3. Correlation Matching. The system searches a set of tuples and correlates
them to one tuple, in order to match all required fields of the template.

It is worth noting that the type-based tuplespace system only performs step 1. The
object-based tuplespace systems perform another step of matching that is based on ob-
ject compatibility, which is different from semantic matching in step 2. In object-based
tuplespace system, the object compatibility is deduced from the implementation of class
hierarchy. In our semantic tuplespace systems, the relationships among the objects are

372 L. Zeng, H. Lei, and B. Chandramouli

declaratively defined by ontologies. As such, the steps 2 and 3 are unique to our seman-
tic tuplespace system. In this paper, we assume that both readers and writers use the
same ontology for a domain. If a tuple writer and a tuple reader use different ontolo-
gies for a domain, then a common ontology can be created for both writer and reader.
Detailed discussion on creating a common ontology is outside the scope of the paper.
Therefore, by engineering ontologies, our system allows different services to exchange
information using their native information format to construct tuples. The cost of en-
gineering ontologies is much less than that of developing object adaptors for object-
based tuplespace systmes as ontologies are declaratively defined. Further, ontologies
are reusable. Details of semantic and correlation matching are presented in the follow-
ing sections.

3 Semantic Matching

As an extension of object-based tuplespace system, semantic matching is used to de-
termine whether a tuple in the sharespace satisfies a tuple retrieval request (read/take).
The difference between object-based matching and semantic matching comes from the
adopted approaches that determine the relation among the objects. As discussed ear-
lier, object-based matching tuple matching is based on object compatibility, where the
subclass relation is deduced from the implementation of class hierarchy. This requires
all the tuplespace users to adopt the same implementation of class hierarchy. In our
semantic matching, we adopt the notion of semantic compatibility (see 3), wherein
the semantic knowledge of synonyms and subclasses can be declaratively defined in
ontologies.

Definition 3 (Semantic Compatibility). Class Ci is semantically compatible with class
Cj , denoted as Ci

s= Cj , if in the ontology, either (i) Ci is the same as Cj (same name
or synonym in an ontology) , or (ii) Ci is a superclass of Cj . �

By adopting the definition of semantic compatibility, we say a class C semantically
belongs to a class set C (denoted as C ∈s C) if ∃Ci ∈ C, C

s= Ci. Using the notion
of semantic compatibility, we define a candidate tuple (see 4) as a tuple that contains
all the fields that are semantically compatible with the fields required by a read/take
operation. In the definition, each of the fields of the tuple needs to be semantically
compatible with the corresponding field of the template. For example (see Table 2),
with regard to the template ϕs, the tuple t can provide all the fields required in ϕs since
the first field sportsCarA ”is a” Car (semantic compatibility) and the rest two fields
are exactly matched. Therefore, t is a candidate tuple for ϕs.

Definition 4 (Candidate Tuple). t is a tuple in tuplespace where Ct is the set that con-
tains all the field classes in t; ϕ is the template for read or take operation, where the
feild class set is Cϕ. t is a candidate tuple for ϕ iff: ∀Ci ∈ Cϕ, Ci ∈s Ct. �

It should be noted that a candidate tuple may not be able to satisfy the filtering con-
dition given in templates. Further examination of the contents of the tuple is required,
in order to determinate whether the tuple should be delivered to tuple readers.

Semantic Tuplespace 373

In our system, when inspecting the contents of tuples, in most cases, the tuplespace
server needs to rewrite fields in the template, except when all the field classes in the
candidate tuple are exactly the same as those of the template, i.e., Ct = Cϕ. Therefore,
each 〈Ci, qi〉 in ϕ, assuming the class type of candidate tuple is C′ for the corresponding
field, should be rewritten as 〈C′, q

′
i〉, where q

′
i is transformed from qi by replacing

property references of class type C with C′.

4 Correlation Matching

As a further extension of object-based tuple matching, our system also enables correlat-
ing multiple tuples for a template. In the following subsections, we first present how to
search a collection of tuples that are correlatable and are able to provide all compatible
fields for read/take operation. This is followed by details on composing results from a
collection of tuples.

4.1 Searching Correlatable Tuple Set for Read/Take Operation

In our framework, multiple tuples in the sharespace can be correlated to one that can
provide all the necessary fields required by a template, wherein the correlation can be
done by the join operator. Correlation can be either based on common fields and/or
attribute dependence functions. In this subsection, we discuss the case of field-based
correlation first, and then illustrate the case of attribute dependence function correlation.

Field-Based Correlation. Obviously, multiple tuples can be correlated using the join
operator to one if they contain same field. For example, two tuples t1 and t2 in Tk (see
Table 2) can be correlated using the join operator as they both have field sportsCarA.
Therefore, when the tuplespace server performs the correlation matching, in order to
compose tuples that can provide all the fields that are required by the template, it first
searches a key-based correlation tuple set, i.e., a set of tuples that are correlatable by a
key field that is specified by the template and can provide all the fields required by the
template. The formal definition of key-based correlation tuple set is as follows.

Definition 5 (Key-based Correlation Tuple Set Skc). T (T = {t1, t2, ..., tn}) is a set
of tuples in tuplespace, Cti is the set that consists of all the field classes in tuple ti and
CT(CT = ∪n

i=1Cti) is aggregation of all the field classes in T ; ϕ is the template for
read/take operation, Ck is the key field’s class type and Cϕ is the set that consists of all
the field classes of ϕ. T is a Key-based Correlation Tuple Set of ϕ iff:

1. ∀C ∈ Cϕ, C ∈s CT;
2. ∀Cti , ∃C

′
k ∈ Cti , Ck

s= C
′
k, and ok

1 = ok
2 = ... = ok

n, where ok
i is the field with

class C
′
k in ti;

3. ∀Cti , ∃C, C ∈ (Cti − (∪i−1
j=1Ctj

⋃∪n
j=i+1Ctj)) and C ∈s Cϕ. �

In this definition, three conditions need to be satisfied when considering a set of tu-
ples as a correlation tuple set for a read/take template: (i) Condition (1) indicates for

374 L. Zeng, H. Lei, and B. Chandramouli

each field class required by the template, there is at least one tuple that contains a com-
patible field class, which is a necessary condition of the definition. (ii) Condition (2)
implies all the field classes are correlatable by the key field. (iii) Condition (3) evinces
any tuples in the set contributes at least one unique field. It should be noted that con-
dition (2) and (3) are the sufficient conditions for the definition. Using above example,
the aggregation of t1 and t2 provides all the required fields in template, which satisfy
condition (1), and they can be correlated as they share the field sportsCarA that is
the descendant for the key field Car in template ϕs. Also, t1 (resp. t2) provides unique
field carInsuranceB (resp. carFinanceC). Therefore, t1 and t2 compose a key-
based correlation tuple set for the template.

Actually, by releasing the constraint that correlating is based on key field only, our
system enables more generic tuple correlation, wherein tuple correlations can be based
on any fields. In such a generic correlation, we adopt the notion of Correlatable
Class (see 6). In this definition, two field classes are correlatable in a set of tuples
if either they appear in the same tuple, or when these two classes do not appear in the
same tuple and belong to two tuples tx and ty respectively, then either (i) tx and ty at
least have one field that is identical; or (ii) there are a sequence tuples in the set that
are correlatable ”step by step” and aiming for correlating tx and ty in the end. Actually,
if we consider tx and ty are entities in ER model, then these tuples between tx
and ty in the sequence are relationships: in order to joint two entities without
common attributes, a collection of relationships [tx+1, tx+2, ... ty−1] are required. For
example, class SportsCar and CarInsurance are correlatable in Tf (see Table 2),
as class SportsCar and CarInsurance appear in t1 and t3 respectively; and t2 is
considered as a relationship to bridge SportsCar and CarInsurance.

Definition 6 (Correlatable Class). Class Ci, Cj are correlatable in tuple set T (T =
{t1, t2, ..., tn}), iff either

– Ci and Cj appear in same tuple (i.e., ∃tx ∈ T, both Ci and Cj ∈ Ctx); or
– Ci and Cj do not appear in same tuple (i.e., �t ∈ T, where Ci and Cj ∈ Ct), then
∃tx, ty ∈ T, x �= y, Ci ∈ Ctx , Cj ∈ Cty , and either:
• ∃ox from tx and ∃oy from ty, ox = oy; or
• there is a correlation tuples sequence [tx, tx+1, tx+2, ... ty−1, ty] in T, and

for any ti, ti+1 in the sequence, ∃ oi from ti and ∃oi+1 from ti+1, so that
oi = oi+1. �

Definition 7 (Field-based Correlation Tuple Set Sfc). T (T = {t1, t2, ..., tn}) is a set
of tuples in tuplespace, Cti is the set that consists of all the field classes in tuple ti and
CT(CT = ∪n

i=1Cti) is aggregation of all the field classes in T ; ϕ is the template for
read/take operation, and Cϕ is the set that consists of all the field classes of ϕ. T is a
Field-based Correlation Tuple Set of ϕ iff:

1. ∀C ∈ Cϕ, C ∈s CT;
2. for ∀ C

′
i , C

′
j ∈ Cϕ, i �= j, ∃ Ci, Cj ∈ CT, C

′
i

s= Ci, C
′
j

s= Cj , and Ci and Cj are
correlatable in T;

3. ∀ti ∈ T, at lease one of the following is true:
– ∃C ∈ (Cti − (∪i−1

j=1Ctj

⋃∪n
j=i+1Ctj)), C ∈s Cϕ;

– ti appears in tuple consequences in condition (2) of this definition. �

Semantic Tuplespace 375

Using the notion of correlatable class, we can define the concept of Field-based Cor-
relation Tuple Set (see 7). In the definition, there are also three conditions that need to
be satisfied when considering a set of tuples as a correlation tuple set for a read/take
template: (i)The same as key-based correlation, condition (1) indicates for each field
class required by the template. (ii) Different from key-based correlation, instead, Con-
dition (2) implies correlation can be on any fields. (iii) Condition (3) evinces any tuples
in the set contributes at least one unique field, either contributes to the required fields
by the template, or appearers in tuple sequence for correlation.

Attribute-Dependence Correlation. Other than field-based, multiple tuples can be
correlated using dependence functions, in case some required fields can not be pro-
vided by any available tuples. Assuming that an absent field’s class Ci has a depen-
dence function, the tuplespace server can compute the value for the absent field from
the tuples that provide elements in the dependence set. For example, if the class type
ShippingDuration is required by the template but not provided by any tuples,

as ShippingDuration’s dependence set is {Departure, Arrival}, the
system can search tuples that contain Departure or/and Arrival and correlate
these tuples and compute the value for ShippingDuration. Again, we first limited
the correlation on key field only, wherein Key-based Attribute-dependence Correlation
Tuple Set can be defined as:

Definition 8 (Key-based Attribute-dependence Correlation Tuple Set Ska). T (T =
{t1, t2, ..., tn}) is a set of tuples in tuplespace, Cti is the set that consists of all the field
classes in tuple ti and CT (CT = ∪n

i=1Cti) is aggregation of all the field classes in
T; ϕ is the template for read/take operation, the key field’s class is Ck and Cϕ is the
set that consists of all the field classes in ϕ. T is an Key-based Attribute-dependence
Correlation Tuple Set of the template ϕ iff:

1. ∀Ci ∈ Cϕ, either
– if Ci ∈s CT, i.e., ∃ C

′
i ∈ CT, Ci

s= C
′
i ; or

– if Ci /∈s CT, then CT contains a complete dependence set DCi of Ci.
2. ∀Cti , ∃C

′
k ∈ Cti , Ck

s= C
′
k , and ok

1 = ok
2 = ... = ok

n, where ok
i is the field with

class C
′
k in ti;

3. ∀ti ∈ T, at lease one of the following is true:

– ∃C ∈ (Cti − (∪i−1
j=1Ctj

⋃∪n
j=i+1Ctj)), C ∈s Cϕ or C ∈ DCi;

– ti appears in tuple consequences in condition (2) of this definition. �

In condition (1) of above definition, unlike field-based correlation tuple set, a field
required by the template may not appear in any tuple, however, its properties can be
computed using dependence functions (See 2). Like field-based correlation in tuple set,
the condition (2) concerns whether tuples can be correlated by the key field. The condi-
tion (3) states that each tuple in the set contributes at least one unique attribute. Again,
we can release the constraint that correlation is based on key-field only . Therefore,
the more generic Attribute-dependence Correlation Tuple Set can be defined (see 9). In
particular, the condition 2 of the definition indicates that correlation can be done based
on any fields.

376 L. Zeng, H. Lei, and B. Chandramouli

Definition 9 (Attribute-dependence Correlation Tuple Set Sac). T (T =
{t1, t2, ..., tn}) is a set of tuples in tuplespace, Cti is the set that consists of all
the field classes in tuple ti and CT (CT = ∪n

i=1Cti) is aggregation of all the field
classes in T; ϕ is the template for read/take operation; Cϕ is the set that consists of
all the field classes in ϕ. T is an Attribute-dependence Correlation Tuple Set of the
template ϕ iff:

1. ∀Ci ∈ Cϕ, either
– if Ci ∈s CT, i.e., ∃ C

′
i ∈ CT, Ci

s= C
′
i ; or

– if Ci /∈s CT, then CT contains a complete dependence set DCi of Ci.
2. Assuming C

′
is the class set for all the C

′
i in condition 1 of this definition, also

assuming D =
⋃
DCi for all Ci /∈s CT, and C = C

′ ⋃
D, then for ∀ Ci, Cj ∈ C,

Ci and Cj are correlatable in T;
3. ∀ti ∈ T, at lease one of the following is true:

– ∃C ∈ (Cti − (∪i−1
j=1Ctj

⋃∪n
j=i+1Ctj)), C ∈s Cϕ or C ∈ DCi;

– ti appears in tuple consequences in condition (2) of this definition. �

4.2 Relationship Among Four Kinds of Correlation Tuple Sets

The relationship among the above four kinds of correlation tuples sets is shown in Fig-
ure 3. In particular, the relationship can be summarized as:

– {Skc} ⊆ {Sfc}
Proof: Condition (1) in Skc and Sfc are same. Further, the tuple set can satisfy
condition (2) and (3) of Skc can also satisfy condition (2) and (3) in Sfc.

– {Sfc} ⊆ {Sac}
Proof: Condition (1) in Sfc is the first situation of condition (1) in Sac. Condition
(2) in in Sfc is same as Condition (2) in Sac when D = ∅, i.e., all the field classes
in the template do not have any attribute dependence function. Condition (3) in both
Sfc and Sac is same.

– {Skc} ⊆ {Ska}
Proof: Condition (1) in Skc is the first situation of condition (1) in Ska. Condition
(2) in in Skc is same as Condition (2) in Ska when D = ∅, i.e., all the field classes
in the template do not have any attribute dependence function. Condition (3) in Skc

is the first situation in condition (3) in Ska.
– {Ska} ⊆ {Sac}

Proof: Condition (1) and (3) in Ska and Sac are same. Further, the tuple set can
satisfy condition (2) of Ska can also satisfy condition (2) in {Sac} as ok

1 = ok
2 =

... = ok
n can guarantee all the required field classes are correlatable in tuple set.

Skc: key-based correlation tuple set
Sfc: field-based correlation tuple set

Sac: attribute-dependence correlation tuple set
Ska: key-based attribute-dependence correlation tuple set

{Skc}{Sfc}

{Sac}

{Ska}

Fig. 3. Relationship Among Four Kinds of Correlation Tuple Sets

Semantic Tuplespace 377

4.3 Template Generation for Correlation Matching

From the above discussion we know that both types of correlatable tuple sets can only
guarantee that the fields required for the template can be provided or computed. How-
ever, further inspection of the contents of tuples is required, in order to determine
whether the filtering conditions given in templates can be satisfied. In our solution,
this is realized by generating a template for each tuple in the set and then using the
generated templates to inspect the contents of each tuple individually.

Assuming there are n tuples ti in the correlation set T (ti ∈ T), We distinguish two
types of fields in T: unique and non-unique fields: unique fields are the fields that are
required by the template ϕ and only appear in one tuple in the tuple set (Cu

T denotes
the collection of all the unique fields), while non-unique fields appear in more than one
tuple in the set. From the definition of correlation tuple set, ∀C ∈ Cu

T, ∃C′ ∈ Cϕ, C′

either is the same as C or super class of C. Therefore, for each 〈C′, q′〉 in a template,
in the case of C′ = C, then in the template ϕi for tuple ti, 〈C′, q′〉 is used without any
changes; while in the case of C′ is super class of C, 〈C′, q′〉 need to be transformed to
〈C, q〉, where query predicate q is transformed from q′ by replacing referenced property
of C′ with property in C.

For example, considering the tuple set Tk for the template ϕs, two tem-
ples ϕ1 and ϕ2 are generated respectively (see Table 2). In particular, the
query predicate SportsCar.price.amount<5000 in ϕ1 is transformed from
Car.price.amount<5000 in ϕ, where Car is replaced by SportsCar.

Once a template ϕi is generated for each ti in T, the tuplespace server needs to test
the query predicates for fields in each template and correlate tuples. In the case of field-
based correlation tuple set, when inspecting the tuple using the generated template, the
false result of query predicate on any tuple in the set will result in discarding the whole
tuple set from further correlation processing. After testing all templates, if the tuple set
is not discarded, the tuple set is correlated to one tuple. Again, we differentiate two dif-
ferent kinds of fields. For unique field, it can be selected from a tuple. For non-unique
field, the tuplespace server prefers a tuple which has same type of field as template re-
quired. By selecting each field required by the template, a tuple is created and delivered
to the reader.

In the case of attribute-dependence correlation tuple set, another step is required on
the correlated tuple: applying the dependence functions to compute the field value and
testing the associated query predicate to determinate whether the generated tuple should
be delivered to the reader.

5 Implementation Aspects

In this section, we discuss the implementation of the proposed tuplespace server (see
Figure 4), which consists of four components: Write Manager, Runtime Store, Persistent
Datastore and Read/Take Manager.

Our tuplespace server supports tuple correlation. This requires the tuplespace server
to persist tuples when they are writing into sharespace, for possible correlation opera-
tion on them thereafter, as it is unlikely that the main memory can store all the tuples in
the sharespace. Further, persistent support also allows tuplespace server restores from

378 L. Zeng, H. Lei, and B. Chandramouli

Tuplespace Runtime Store

(Main Memory) Tuplespace Datastore
Write Manager

(RDBMS)Read/Take Manager

Fig. 4. System Architecture of Tuplespace Server

UIDDirectory

Datapage(tuple object)

UID UID UIDUID UID

Fig. 5. Hash Index in Runtime Store

runtime failure, which is a key requirement for mission critical applications. There-
fore, in our design, the Tuple Writer manages both Runtime Store in main memory and
Persistent Datastore in Relational Database. When Tuple Writer receives a write tuple
request from users, it saves the tuple object in both the Runtime Store and the Persis-
tent Datastore. In case the main memory is full, it needs to remove some tuples from
Runtime Store, wherein First In First Out update algorithm is adopted. In our
design, tuples in the Runtime Store as objects have unique object IDs. As the runtime
store is considered as a cache for the tuplespace datastore, we create a tuple ID-based
hash index, where the unique object ID is used to locate the tuple object. Therefore,
when the tuple writer receives a tuple, it saves the tuple with the unique object ID, and
then invokes hash functions to update the hash index. When the tuple writer saves a
tuple object in runtime store, it also persists the tuple object in tuplespace Datastore.
This cache improves the system performance on retrieving tuple contents when tuple
UIDs are identified.

The datastore provides persistent storage of tuples. When considering the imple-
mentation of datastore, the intuitive choice is adopting object store (i.e., persist tuples
as objects). However, it is very costly when inspecting tuples’ contents for tuple match-
ing: entire tuple objects need to be deserialized in the memory. In fact, in most cases,
tuple matching may only concern some attributes of tuples. For the sake of performance
and scalability, instead of adopting object store, relation database is used to implement
Persistent Datastore. Therefore, when conducting tuple matching, the inspection can
only focus on the attributes that are concerted by the templates, without deserialization
of entire tuple objects.

When adopting relational approach to persist tuples, mapping between tuple objects
and relation tables is required. As user operations on tuples do not explicitly declare
the data schema of the tuple (i.e., declaration of tuple schema is not required by the
tuplespace system), a tuple can not be stored as a record in a predefined table. In our
solution, the tuplespace server separates the data organization of tuple and contents
of tuples (see Figure 6), wherein one table FieldTypes is used to store the class
type information for each field in tuples, while another table TupleValues is used
to store the contents of tuples. It should be noted that both class type information and
the content of the tuples are stored vertically in these tables. In particular, for table

Semantic Tuplespace 379

1..

∗

∗

0.. 11.. ∗

1.. ∗

1..

1 1

1

tupleID bigint

fieldTypeID bigint

itemName varchar

dimensionID bigint

stringValue varchar

dimensionID bigint

tupleTypeID bigint

 dimensionOrder integer

sequenceID integertypeName varchar

typeID integer

doubleValue double

1 1

tupleTypeID bigint

fieldTypeID bigint

dimensions integer

ontologyName varchar

classTypeName varchar
serializationClass varchar

deserializationClass varchar

tupleTypeID bigint

classTypeName varchar

TupleTypes
FieldTypes

Type

Dimensions

TupleValues

Fig. 6. ER diagram for Persistent Datastore

FieldTypes, each field in a tuple occupies a row. For each tuple in tuplespace a
unique tupleTypeID is assigned for each type of tuple. In table TupleValues,
each elementary element in a field has a record in the table and tupleID is unique for
each tuple in tuplespace. Using tupleID and fieldTypeID, the records in the table
can be correlated to individual tuples. Table Dimensions (D for short) is used
to store the dimension information when there exists any array type of data elements in
fields. By specifying dimensionOrder and sequenceID, the datastore can store
any dimension array of data in a tuple. Further, the table Types gives type information
in tuplespace.

The Read/Take Manager handles tuple read/take requests from users. When it re-
ceives read/take requests, it searches for a single tuple that can match the template first.
In case there are no single tuple matching the template or users required, the Read/Take
Manager searches a correlation tuple set for the temple. In our solution, both semantic
and correlation matching is done by generating queries on persistent data store. Details
on design of query generation are omitted due to space reasons.

6 Related Work

An effort to provide semantic support in communication paradigm is given in [15],
wherein we introduce ontologies into the publish/subscribe systems to understand event
contents. This relaxes the constraint in prior content-based pub/sub systems that pub-
lishers and subscribers must share the same event schemas. It supports semantic-based,
automatic event correlations of multiple event sources for subscriptions, which also
overcomes the limitation of relational publish/subscribe systems [8] that requires event
consumers to explicitly specify the correlation of event sources. In this paper, we apply
the same idea to the tuplespace system, i.e., providing flexibility and adaptability in
communication paradigm by leveraging data semantics. Unlike publish/subscribe sys-
tems, the tuplespace system does not require the explicit declaration of the data schema
when reading and writing tuples, which imposes new challenges when introducing se-
mantic support.

The tuplespace system is a very active area of research and development. Early tu-
plespace systems [4,7] can be considered as a software implementation of a shared

380 L. Zeng, H. Lei, and B. Chandramouli

distributed memory. The sharespace appears as a single shared blackboard where tuples
can be deposited. Readers are notified when the values of tuples match templates. In
this way information can be shared and tuples can be passed among services. As a fur-
ther development for supporting coordination among services, reactivity was added into
tuplespace [3], where local policies could be specified for interactions among the tuple
readers and writers. However, in the above systems, expression power of specifying the
matching template is very limited for both data type and exactly value matching.

ObjectSpace [12] and T Space [10] added object-orientation to the tuplespace sys-
tem, wherein a template and a tuple match if the type of the tuple is an instance of the
type in the template. The limitation is that object-compatibility assumes both tuple writ-
ers and readers adhere to the same implementation of class hierarchy. In our semantic
tuplespace system, we externalize the semantic of tuples, wherein ontology is used to
understand the content of tuples in matching algorithm. On the other aspect, in order
to enhance the tuple retrieval power, PLinda [1] added database functionalities (query
predicates, join operator and transaction) into tuplespace systems. In our semantic tu-
plespace, not only are the database functionalities fully supported, but the join operation
is also transparent to tuple readers when correlating multiple tuples for tuple matching.

Triple Space [6,2] provides an asynchronous communication mechanism that
supports the four types of autonomy: time, space, reference, and data schema. The data
schema is implemented using RDF [13] to understand the communication contents,
which is similar to semantic matching in semantic tuplespace system. It should be
noted that with the persistent data store, our system also supports these four types
autonomy. In additional, our system provides correlation autonomy, i.e., automatic
tuple correlation.

An initial effort to provide semantic support for tuplespace matching is given in sTu-
ple [9], which relaxes the constraints in object-based tuplespace that readers and writers
must share the same implementation of class hierarchy. However, it only considers one
tuple and one template matching. This is similar to the case of semantic matching in
our system. Our system proposes a comprehensive schematic tuplespace system. In
particular, it supports semantic-based, automatic correlations of multiple tuples for tu-
ple matching, which also overcomes the limitation of PLinda system that requires tuple
readers to explicitly specify the correlation of tuples.

Semantic matching is widely adopted to solve the service matching problem in the
semantic Web [5,14]. The basic idea of semantic matching is to determine the semantic
distance between co-existent terms within shared ontologies, where service queries and
descriptions are based on pre-defined schema. However, the semantic matching that en-
ables tuple routing in our tuplespace system is conducted without the user’s declaration
of data schema when writing and reading tuples.

7 Conclusion

In this paper, we propose a semantic tuplespace system, which is another step forward in
the development of current tuplespace systems. We introduce semantics to understand
the tuple contents. Our system not only considers single tuple for read/take operation,
but also automatically correlates multiple tuples using relational operators based on

Semantic Tuplespace 381

templates. Unlike object-based tuplespace systems, the tuple correlation in our system is
transparent to the tuple reader. We argue that the proposed tuplespace system is essential
to enable cooperative service communication in service-oriented computing. Our future
work includes optimization of semantic tuple matching and tuple correlation, and a
scalability and reliability study of the system.

References

1. B. Anderson and D. Shasha. Persistent Linda: Linda + transactions + query processing, 1991.
2. C. Bussler. A minimal triple space computing architecture. In 2nd WSMO Implementation

Workshop, Innsbruck, Austria, June 2005.
3. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive tuple spaces for mobile agent coordina-

tion. Lecture Notes in Computer Science, 1477, 1998.
4. N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.
5. D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. Dreggie: Semantic service discovery

for m-commerce applications, 2001.
6. D. Fensel. Triple-space computing: Semantic web services based on persistent publication

of information. In IFIP Int’l Conf. on Intelligence in Communication Systems 2004, pages
43–53.

7. Y. S. Gutfreund, J. Nicol, R. Sasnett, and V. Phuah. Wwwinda: An orchestration service for
www browsers and accessories. In WWW Conference ’94: Mosaic and the Web, 1994.

8. Y. Jin and R. Strom. Relational subscription middleware for internet-scale publish-subscribe.
In 2nd international workshop on Distributed event-based systems, San Diego, California,
pages 1–8, 2003.

9. D. Khushraj, O. Lassila, and T. Finin. sTuples: Semantic Tuple Spaces. In First Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston,
Massachussets, USA, August 22 - 26, 2004.

10. T. J. Lehman, S. W. McLaughry, and P. Wycko. T spaces: The next wave. In HICSS, 1999.
11. OWL, 2005. http://www.w3.org/TR/owl-ref/.
12. A. Polze. Using the Object Space: a Distributed Parallel Make. In The 4th IEEE Workshop

on Future Trends of Distributed Computing Systems, Lisbon, September, 1993.
13. RDF Primer, W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-primer/.
14. K. Sycara, S. Wido, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among heteroge-

neous software agents in cyberspace, 2002.
15. L. Zeng and H. Lei. A semantic publish/subscribe system. In CEC-EAST ’04: Proceedings

of the E-Commerce Technology for Dynamic E-Business, IEEE International Conference on
(CEC-East’04), pages 32–39, Washington, DC, USA, 2004. IEEE Computer Society.

	Introduction
	Preliminaries
	Ontology
	System Architecture
	Tuple Matching in Semantic Tuplespace System

	Semantic Matching
	Correlation Matching
	Searching Correlatable Tuple Set for Read/Take Operation
	Relationship Among Four Kinds of Correlation Tuple Sets
	Template Generation for Correlation Matching

	Implementation Aspects
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

