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Introduction

- The cloud has matured as the platform for compute and data
processing

- The edge is becoming important as a source, destination, and
conduit for cloud computation

- There is increased focus on simplicity, ease of adoption and
deployment, and auto-scaling with serverless abstractions

- We are ingesting, storing, processing rich big data with dynamic
schema, such as JSON



The Compute — Storage Gap

- Storage (be it main memory, local disk, or cloud storage) is
not keeping up with advances in compute simplification

- Today'’s state of the practice
- Use auto-scaling compute (Lambda, Functions) or Kubernetes
- Keep everything in memory: use input replay or tolerate data loss

- Or, use remote elastic SQL/storage services (Aurora, Socrates, BigTable, ...)
on every invocation/event

- Throw in a cache as an afterthought — always Redis



The Landscape Today

- A kitchen sink of storage services and design patterns for stateful
apps over modern compute substrates

- Poor memory & storage utilization, latency (last mile is longest)

- Unclear recovery & consistency guarantees in distributed
deployments with caches

- An inability to ingest, store, process modern & rich evolving
datasets quickly (e.g., the Twitter firehose)

- Too much user effort: choosing indices, storage formats, and data
layouts, ...



Case Study: Trill for Bing Ads

- Trill is a high speed in-mem columnar streaming analytics library
- Now OSS; used across Microsoft: Azure, Bing, Office, Windows, ...

- Library model of Trill was a huge success
- Used with a variety of distributed fabrics (Orleans, Scope/Cosmos, Kubernetes, ...)

- Bing Ads uses Trill in scaled-out Scope compute infra
- Temporal Locality of State

- Search engine maintains per-user stats Devices, Clients,
over last week Dashboards, ...

- Billions of users “alive” at given instant
+ But, only millions actively surfing

- Everything stored in main memory

- Storage is the main reason to scale out

Pipelines,
Analytics, ...
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The SimpleStore Research Agenda

Simplify app view of [storage + cache]; high performance

Build single-node embedded storage artifacts
« Use by end-user apps or cloud services
« Use as storage accelerator or point of truth
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- Compute Workloads - Big Data Analytics Workloads
- Unified log/storage abstraction across - Embedded library for ingesting, storing,
memory, local, cloud storage (FASTER Log) querying flexible-schema data (FishStore)
- Embedded KV store + cache (FASTER KV) - Fast partial parsing techniques for flexible
- Scalable consistency & recovery models schema data (Mison)
for such workloads (CPR) - In progress: ML-driven automatic data
- Resilient stateful actors (CRA / Ambrosia) layout and indexing of high-dimensional
- In progress: auto-scaling and zero-config data

library for serverless storage



Talk Outline

- Introduction & Motivation

- SimpleStore for Compute Workloads

- FASTER Log

- FASTER KV + cache

- Concurrent Prefix Recovery
- Library for Serverless

- SimpleStore for Big Data Analytics
- FishStore for flexible schema data
- Learned data layouts for storage & caching

- Conclusions
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Compute over Fine-Grained Objects

- Many apps operate over billions of fine-grained objects
- loT device tracking, data center monitoring, streaming, online services, ...

- State consists of independent objects — devices, users, ads

S
Apps, Services, -
Streaming

- Overall state doesn’t fit in memory

- Point ops with lots of updates D;Viﬁ‘és' C';e”tsr
e.g., update per-device average CPU reading EHEoAr -

- Atomic read-modify-write (RMW)
- State exhibits temporal locality
- State needs to be recoverable

Pipelines,
Analytics, ...

- Problem across edge, cloud, multi-tenant, and serverless
applications



What is FASTER

- An open-source library for accelerating object storage

- High performance, concurrent, latch free, shared memory
- Two sub-components

1) FASTER Log

- Record log abstraction over tiered storage: enqueue, commit, scan, read, truncate

- "Hybrid” support: tail may optionally be modified in-memory safely, as mutable region
- Can be used independently as a persistent queue

2) FASTER KV

- Hash key-value store over the record log

- Shapes the (changing) hot working set in memory - integrated cache

- Performance: up to 200 million ops/sec for YCSB variants
- One Intel Xeon machine, two sockets, 72 threads
- Exceeds throughput of pure in-memory systems when working set fits in memory



Architecture & Components
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- Technical Innovations
- Indexing: Concurrent Hash Index

- Record Storage: "Hybrid Log” Record Allocator

- Threading: Epoch Protection Framework with Trigger Actions



Hybrid Log in Brief

- Divide memory into three regions

- Stable (on disk) - Read-Copy-Update (RCU)
- Mutable (in memory) = In-Place Update (IPU) - optional
- Read-only (in memory) - Read-Copy-Update (RCU)

- Hybrid concurrency model

+ RCU: compare-and-swap on index
+ IPU: user record-level concurrency

- Tail grows = offsets grow as well
- New records allocated at tail

- New & updated records stay in mutable region for a
while = captures temporal locality

- Supports tiering, e.g., [memory, SSD, cloud storage]
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Scalability of FASTER KV with # Threads

- When current working set "happens to fit" in hybrid log memory

Number of Threads
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What About Durability?

- Write Ahead Log? Every change is recorded in
WAL

- Stresses write bandwidth; log is a scalability
bottleneck; fine-grained commit acks

FASTER + WAL:
>150M ops/sec > ~15M ops/sec

Custom in-mem txn database + WAL:
bottleneck at ~20M single-key txns per sec
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Towards Our Approach: Prefix Recovery

- Adopt the semantics of group commit CPU ops

- Prefix Recovery (PR) based commit

+ Commit = { all ops issued up to time t }
- Clients can prune in-flight op log until t, expose commit
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- Compatible with reliable messaging systems
(e.g., Kafka)

input op sequence

- Today's PR approaches are not scalable ——
- Using WAL: { fuzzy chkpt + WAL }
- Atomic commit log of ops = scalability bottleneck v v+1

. Quiesce the database = not desirable



Concurrent Prefix Recovery (CPR)

- System notifies each thread §; of a commit point

- . . ' CPU ops
t; in its local operation timeline T
- Eliminates system-wide single time point t :.:} D
- All ops before t; are committed, and none after, % )
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Using CPR to Build Systems

- CPR makes it possible to implement scalable group commit
- But, non-trivial to design systems that achieve this scalability!
- We used CPR to add durability to

- Simple concurrent shared-memory transactional database
- FASTER KV

- Non-trivial details; based on epochs + state machine; see paper

- CPR model is interesting for distributed/serverless storage as well



In-mem DB Prototype + CPR

- Compared CPR against:
. WAL

- CALC (point-in-time checkpoints using atomic commit log of ops)

- Summary: CPR scales linearly
with #threads

- See paper for details
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FASTER + CPR: End-to-End Experiment

- Vary client op buffer size; issue commit when buffer 80% full
- Use 36 client threads, YCSB 50:50 workload
- Figure shows a commit latency vs. throughput tradeoff
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Current Status of FASTER

- Open sourced at https://github.com/microsoft/FASTER

microsoft / FASTER
® Watch~ 180 W Unstar 3.7k ¥ Fork 262

- Research papers: SIGMOD 2018, VLDB 2018 demo, SIGMOD 2019

- Summary of Use Cases

- State store for streaming pipelines

- Edge cache** in front of point-of-truth database backends

- Scalable persistent queue abstraction for edge-cloud (FasterLog)

- Integrated into Timely Dataflow (with Rust wrapper over FASTER C++)

- Presented and evaluated recently as alternative to RocksDB (Flink Forward 2019)



Future: Storage for Serverless/Actor Apps

- CPR = Distributed CPR - Decentralized Storage Library
- Leverage cloud services

Metadata
Store
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Compute (Container)



Stateful Actor Frameworks

- Actor-oriented systems (Orleans, Ray, Durable Functions,
Ambrosia) are helping simplity stateful applications

- Expose abstraction of [resilient compute + local memory]
- Use DB ideas of checkpoint/replay or active-active for state recovery

- Reusable storage artifacts help build such systems, make it
easler to manage app state

- Users still need storage + cache libraries

- Applications do not always live within the confines of specific framework
- Elasticity is easier, quicker, more reliable, manageable with stateless fabrics

- Applications have diverse remote storage needs (e.g., store truth in CosmosDB,
access larger-than-memory shards on compute node, map-reduce)
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Simplifying Analytics: FishStore

- Stands for Faster Ingestion with Subset Hashing

- Storage library for dynamic flexible-schema data, e.g., JSON, CSV

- Based on registration of dynamic predicates/query templates over data
- Query-driven dynamic schema inference
- Rockset talk provided great motivational use cases

- Two bottlenecks: indexing & parsing
- Extended FASTER to index “interesting subsets” of data in chains
- Generic parser interface to parse only “interesting” fields - we use Mison & simdjson

- Ingests at 10GB/sec, saturates 2GB/sec SSD with < 8 cores
- Detalls: SIGMOD 2019 paper, VLDB 2019 demo
- Open source at https://github.com/microsoft/FishStore



FishStore Architecture

- Ingest + index: fast path - Query on registered templates

- Dynamically reg/dereg templates
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Future: Automatic Data Layout, Caching, Indexing

- Ultimate Goal

- Ingest high-dim flexible schema data, impose access workload (queries) on library
- Storage auto-optimizes layout/access methods over time

- First attempt: workload-driven data layout for OLAP

- Leverage reinforcement learning

- Initial results are surprising
- Data layouts are an order-of-magnitude better than traditional layouts
- Produces data blocks: form basis for caching at storage clients
- Supports advanced layouts where tuples may be in multiple blocks



Thank You

microsoft/FASTER microsoft/Trill

Fast persistent recoverable log and key-value store, in C# and C++, from Trill is a single-node query processor for temporal or streaming data.
Microsoft Research.

:E*: w37k ¥2s8 ®c: *ik ¥Ys6

microsoft/FishStore microsoft/AMBROSIA

FishStore is a prototype fast ingestion and querying layer for flexible-schema Robust Distributed Programming Made Easy and Efficient
data
®c+ koo ¥3 @cr 306 Y28
L
microsoft/CRA = Find our open-source work at
Common Runtime for Applications (CRA) is a software layer (library) that makes https://githu b.com/bad rishc

it easy to create and deploy distributed dataflow-style applications on top of
resource managers such as Kubernetes, Y...

0 k2 Yo Pubs at https://badrish.net/

Interested in working on SimpleStore? Contact me for internships @MSR.
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