=% Microsoft

a0y

Rethinking Storage

for the cloud, edge,
serverless, and big data era

Badrish Chandramouli

Microsoft Research, Redmond
badrishc@microsoft.com | @badrishc
https://badrish.net/

Introduction

- The cloud has matured as the platform for compute and data
processing

- The edge is becoming important as a source, destination, and
conduit for cloud computation

- There is increased focus on simplicity, ease of adoption and
deployment, and auto-scaling with serverless abstractions

- We are ingesting, storing, processing rich big data with dynamic
schema, such as JSON

The Compute — Storage Gap

- Storage (be it main memory, local disk, or cloud storage) is
not keeping up with advances in compute simplification

- Today'’s state of the practice
- Use auto-scaling compute (Lambda, Functions) or Kubernetes
- Keep everything in memory: use input replay or tolerate data loss

- Or, use remote elastic SQL/storage services (Aurora, Socrates, BigTable, ...)
on every invocation/event

- Throw in a cache as an afterthought — always Redis

The Landscape Today

- A kitchen sink of storage services and design patterns for stateful
apps over modern compute substrates

- Poor memory & storage utilization, latency (last mile is longest)

- Unclear recovery & consistency guarantees in distributed
deployments with caches

- An inability to ingest, store, process modern & rich evolving
datasets quickly (e.g., the Twitter firehose)

- Too much user effort: choosing indices, storage formats, and data
layouts, ...

Case Study: Trill for Bing Ads

- Trill is a high speed in-mem columnar streaming analytics library
- Now OSS; used across Microsoft: Azure, Bing, Office, Windows, ...

- Library model of Trill was a huge success
- Used with a variety of distributed fabrics (Orleans, Scope/Cosmos, Kubernetes, ...)

- Bing Ads uses Trill in scaled-out Scope compute infra
- Temporal Locality of State

- Search engine maintains per-user stats Devices, Clients,
over last week Dashboards, ...

- Billions of users “alive” at given instant
+ But, only millions actively surfing

- Everything stored in main memory

- Storage is the main reason to scale out

Pipelines,
Analytics, ...

S
Apps, Services, .
Streaming

The SimpleStore Research Agenda

Simplify app view of [storage + cache]; high performance

Build single-node embedded storage artifacts
« Use by end-user apps or cloud services
« Use as storage accelerator or point of truth

7 \

- Compute Workloads - Big Data Analytics Workloads
- Unified log/storage abstraction across - Embedded library for ingesting, storing,
memory, local, cloud storage (FASTER Log) querying flexible-schema data (FishStore)
- Embedded KV store + cache (FASTER KV) - Fast partial parsing techniques for flexible
- Scalable consistency & recovery models schema data (Mison)
for such workloads (CPR) - In progress: ML-driven automatic data
- Resilient stateful actors (CRA / Ambrosia) layout and indexing of high-dimensional
- In progress: auto-scaling and zero-config data

library for serverless storage

Talk Outline

- Introduction & Motivation

- SimpleStore for Compute Workloads

- FASTER Log

- FASTER KV + cache

- Concurrent Prefix Recovery
- Library for Serverless

- SimpleStore for Big Data Analytics
- FishStore for flexible schema data
- Learned data layouts for storage & caching

- Conclusions

Talk Outline

- Introduction & Motivation

- SimpleStore for Compute Workloads

- FASTER Log

- FASTER KV + cache

- Concurrent Prefix Recovery
- Library for Serverless

- SimpleStore for Big Data Analytics

- FishStore for flexible schema data
- Learned data layouts for storage & caching

- Conclusions

Compute over Fine-Grained Objects

- Many apps operate over billions of fine-grained objects
- loT device tracking, data center monitoring, streaming, online services, ...

- State consists of independent objects — devices, users, ads

S
Apps, Services, -
Streaming

- Overall state doesn’t fit in memory

- Point ops with lots of updates D;Viﬁ‘és' C';e”tsr
e.g., update per-device average CPU reading EHEoAr -

- Atomic read-modify-write (RMW)
- State exhibits temporal locality
- State needs to be recoverable

Pipelines,
Analytics, ...

- Problem across edge, cloud, multi-tenant, and serverless
applications

What is FASTER

- An open-source library for accelerating object storage

- High performance, concurrent, latch free, shared memory
- Two sub-components

1) FASTER Log

- Record log abstraction over tiered storage: enqueue, commit, scan, read, truncate

- "Hybrid” support: tail may optionally be modified in-memory safely, as mutable region
- Can be used independently as a persistent queue

2) FASTER KV

- Hash key-value store over the record log

- Shapes the (changing) hot working set in memory - integrated cache

- Performance: up to 200 million ops/sec for YCSB variants
- One Intel Xeon machine, two sockets, 72 threads
- Exceeds throughput of pure in-memory systems when working set fits in memory

Architecture & Components

Threads
>
ooy Ty T .
>
>

Hash

head

Index Hybnd

Record Log

<

- Disk

- Memory (cache)

7
S

tail

- Technical Innovations
- Indexing: Concurrent Hash Index

- Record Storage: "Hybrid Log” Record Allocator

- Threading: Epoch Protection Framework with Trigger Actions

Hybrid Log in Brief

- Divide memory into three regions

- Stable (on disk) - Read-Copy-Update (RCU)
- Mutable (in memory) = In-Place Update (IPU) - optional
- Read-only (in memory) - Read-Copy-Update (RCU)

- Hybrid concurrency model

+ RCU: compare-and-swap on index
+ IPU: user record-level concurrency

- Tail grows = offsets grow as well
- New records allocated at tail

- New & updated records stay in mutable region for a
while = captures temporal locality

- Supports tiering, e.g., [memory, SSD, cloud storage]

Tiered Storage

> <«

Memory

LA

I
o

Stable

\4

Read
Only

7

Mutable

LA = oo

Increasing
Logical
Address

Head
Offset

Read-Copy

Update

ReadOnly
Offset

In-Place
Update

Scalability of FASTER KV with # Threads

- When current working set "happens to fit" in hybrid log memory

Number of Threads

150 100
_ —e— FASTER (2cpu) —&—FASTER (2cpu)
(&) N
3 —o— Intel TBB (2cpu) ©80 —e—Intel TBB (2cpu)
g— 100 Masstree (2cpu) §60 Masstree (2cpu)
:’ RocksDB (2cpu) é RocksDB (2cpu)
:)
= 240
g» 50 5
E g 20 \\—‘—‘\'_‘_.
\/\.\.——.-_.,.—. =
0 10 20 30 40 50 60 1 2 4
0 ONumber%? Threads 0 >0 60

100% RMW; 8 byte payloads

100% blind updates; 100 byte payloads

What About Durability?

- Write Ahead Log? Every change is recorded in
WAL

- Stresses write bandwidth; log is a scalability
bottleneck; fine-grained commit acks

FASTER + WAL:
>150M ops/sec > ~15M ops/sec

Custom in-mem txn database + WAL:
bottleneck at ~20M single-key txns per sec

CPU ops
m
New -
|
m

WAL

02 Og 01 04 Og NEENUT

\

J

Y
group commit

Towards Our Approach: Prefix Recovery

- Adopt the semantics of group commit CPU ops

- Prefix Recovery (PR) based commit

+ Commit = { all ops issued up to time t }
- Clients can prune in-flight op log until t, expose commit

1
1
L ——
|
1
1

v

- Compatible with reliable messaging systems
(e.g., Kafka)

input op sequence

- Today's PR approaches are not scalable ——
- Using WAL: { fuzzy chkpt + WAL }
- Atomic commit log of ops = scalability bottleneck v v+1

. Quiesce the database = not desirable

Concurrent Prefix Recovery (CPR)

- System notifies each thread §; of a commit point

- . . ' CPU ops
t; in its local operation timeline T
- Eliminates system-wide single time point t :.:} D
- All ops before t; are committed, and none after, %)
Vl input op sequence

Commit 71 Commit 2

- Same consistency as PR, but allows scalable — —

01| O, 03(Oy 05 06" O, | Og

multi-threaded implementation 7

- System, not user, chooses exact CPR point per

0,]/0,| 03|04)oS O 07R03

o} oz(O3 | 04| O5 | Og | O

thread = key to non-blocking

01] 02| 03|04 /05 06(O7 | Og

Using CPR to Build Systems

- CPR makes it possible to implement scalable group commit
- But, non-trivial to design systems that achieve this scalability!
- We used CPR to add durability to

- Simple concurrent shared-memory transactional database
- FASTER KV

- Non-trivial details; based on epochs + state machine; see paper

- CPR model is interesting for distributed/serverless storage as well

In-mem DB Prototype + CPR

- Compared CPR against:
. WAL

- CALC (point-in-time checkpoints using atomic commit log of ops)

- Summary: CPR scales linearly
with #threads

- See paper for details

o0
-
]

N
-

Throughput (M txns/sec)
eI
S O

-)

CPR
—¥— CALC
—i— WAL

‘.g'y/:/:/;
0 20 40 60

Threads

FASTER + CPR: End-to-End Experiment

- Vary client op buffer size; issue commit when buffer 80% full
- Use 36 client threads, YCSB 50:50 workload
- Figure shows a commit latency vs. throughput tradeoff

100

- EZ2Z] Zipfian BN Uniform 3 335 7.50s

60 -
401 0.73s 0.90s

20 1

Throughput (M ops/sec)

O-

31 61 122 244 488 977
Per-Client Buffer Size (KB)

Current Status of FASTER

- Open sourced at https://github.com/microsoft/FASTER

microsoft / FASTER
® Watch~ 180 W Unstar 3.7k ¥ Fork 262

- Research papers: SIGMOD 2018, VLDB 2018 demo, SIGMOD 2019

- Summary of Use Cases

- State store for streaming pipelines

- Edge cache** in front of point-of-truth database backends

- Scalable persistent queue abstraction for edge-cloud (FasterLog)

- Integrated into Timely Dataflow (with Rust wrapper over FASTER C++)

- Presented and evaluated recently as alternative to RocksDB (Flink Forward 2019)

Future: Storage for Serverless/Actor Apps

- CPR = Distributed CPR - Decentralized Storage Library
- Leverage cloud services

Metadata
Store

|

|
... Wrapper Cloud |
Library Messaging

Compute (Container)

Stateful Actor Frameworks

- Actor-oriented systems (Orleans, Ray, Durable Functions,
Ambrosia) are helping simplity stateful applications

- Expose abstraction of [resilient compute + local memory]
- Use DB ideas of checkpoint/replay or active-active for state recovery

- Reusable storage artifacts help build such systems, make it
easler to manage app state

- Users still need storage + cache libraries

- Applications do not always live within the confines of specific framework
- Elasticity is easier, quicker, more reliable, manageable with stateless fabrics

- Applications have diverse remote storage needs (e.g., store truth in CosmosDB,
access larger-than-memory shards on compute node, map-reduce)

Talk Outline

- Introduction & Motivation

- SimpleStore for Compute Workloads

- FASTER Log

- FASTER KV + cache

- Concurrent Prefix Recovery
- Library for Serverless

- SimpleStore for Big Data Analytics
- FishStore for flexible schema data
- Learned data layouts for storage & caching

- Conclusions

Simplifying Analytics: FishStore

- Stands for Faster Ingestion with Subset Hashing

- Storage library for dynamic flexible-schema data, e.g., JSON, CSV

- Based on registration of dynamic predicates/query templates over data
- Query-driven dynamic schema inference
- Rockset talk provided great motivational use cases

- Two bottlenecks: indexing & parsing
- Extended FASTER to index “interesting subsets” of data in chains
- Generic parser interface to parse only “interesting” fields - we use Mison & simdjson

- Ingests at 10GB/sec, saturates 2GB/sec SSD with < 8 cores
- Detalls: SIGMOD 2019 paper, VLDB 2019 demo
- Open source at https://github.com/microsoft/FishStore

FishStore Architecture

- Ingest + index: fast path - Query on registered templates

- Dynamically reg/dereg templates

PSF Indexing Incoming Data
Hash Table Requests _ -

Index Scan (p,d)
= 14
\

P19 Registration l l
E
i
i
:l ———]

|
|
Parser & |

Pred Evaluator :

|

|

|

|

Record Insertion I

|

|

Data Ingress Workers

r———————————

Full Scan

Time-ordered Record Log

—»

Future: Automatic Data Layout, Caching, Indexing

- Ultimate Goal

- Ingest high-dim flexible schema data, impose access workload (queries) on library
- Storage auto-optimizes layout/access methods over time

- First attempt: workload-driven data layout for OLAP

- Leverage reinforcement learning

- Initial results are surprising
- Data layouts are an order-of-magnitude better than traditional layouts
- Produces data blocks: form basis for caching at storage clients
- Supports advanced layouts where tuples may be in multiple blocks

Thank You

microsoft/FASTER microsoft/Trill

Fast persistent recoverable log and key-value store, in C# and C++, from Trill is a single-node query processor for temporal or streaming data.
Microsoft Research.

:E*: w37k ¥2s8 ®c: *ik ¥Ys6

microsoft/FishStore microsoft/AMBROSIA

FishStore is a prototype fast ingestion and querying layer for flexible-schema Robust Distributed Programming Made Easy and Efficient
data
®c+ koo ¥3 @cr 306 Y28
L
microsoft/CRA = Find our open-source work at
Common Runtime for Applications (CRA) is a software layer (library) that makes https://githu b.com/bad rishc

it easy to create and deploy distributed dataflow-style applications on top of
resource managers such as Kubernetes, Y...

0 k2 Yo Pubs at https://badrish.net/

Interested in working on SimpleStore? Contact me for internships @MSR.

Thanks to Present &
Past Collaborators

Yinan Li, Donald Kossmann, Dong Xie,
Guna Prasaad, Justin Levandoski, James
Hunter, Chi Wang, Johannes Gehrke,
Zongheng Yang, Tianyu Li, Sam Madden,
Umar F. Minhas, Jonathan Goldstein,
Ibrahim Sabek, Ryan Stutsman, Chinmay
Kulkarni, and others.

