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ABSTRACT
The work performed by a publish/subscribe system can conceptu-
ally be divided into subscription processing and notification dis-
semination. Traditionally, research in the database and networking
communities has focused on these aspects in isolation. The inter-
face between the database server and the network is often over-
looked by previous research. At one extreme, database servers
are directly responsible for notifying individual subscribers; at the
other extreme, updates are injected directly into the network, and
the network is solely responsible for processing subscriptions and
forwarding notifications. These extremes are unsuitable for com-
plex and stateful subscription queries. A primary goal of this paper
is to explore the design space between the two extremes, and to de-
vise solutions that incorporate both database-side and network-side
considerations in order to reduce the communication and server
load and maintain system scalability. Our techniques apply to a
broad range of stateful query types, and we present solutions for
several of them. Our detailed experiments based on real and syn-
thetic workloads with varying characteristics and link-level net-
work simulation show that by exploiting the query semantics and
building an appropriate interface between the database and the net-
work, it is possible to achieve orders-of-magnitude savings in net-
work traffic at low server-side processing cost.

1 Introduction
The advent of the Digital Age has enabled data collection on an
unprecedented scale. An important problem is how to disseminate
relevant information efficiently to users over a network. Users can
poll data sources for information; however, polling too frequently
may be inefficient, while polling less often may miss important up-
dates. The alternative, supported by publish/subscribe systems, is
to push updates to users according to their interests, which are ex-
pressed using subscriptions. The push model is better suited for
ensuring timely update delivery required by many applications in-
volving data monitoring. Examples of such applications abound in
various domains: personal (e.g., news alerts and Internet auctions),
financial (e.g., trading stock and commodity in real time), security
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(e.g., distributing critical software patches), military (e.g., dissemi-
nating command and surveillance information), etc.

At the conceptual level, the bulk of the work performed by a pub-
lish/subscribe system can be roughly divided into two components:
(1) subscription processing, the task of matching and processing
each incoming publish message with the large set of active sub-
scriptions, and (2) notification dissemination, the task of notifying,
over a network, those subscribers who are interested in the publish
message. Previous work from the database research community
has focused on efficient subscription processing; notification dis-
semination is rarely addressed. Most existing work assumes that a
server maintains the entire database state and all subscriptions in
the system, and is responsible for computing the set of subscribers
affected by each incoming publish message. A straightforward
way to notify this set of subscribers is to unicast a notification to
each of them in turn. When many subscribers need to be notified,
this approach will incur a large amount of outbound traffic from
the server, and may easily overwhelm the server and its network
links. As server-side subscription processing techniques (such as
sharing [11] and indexing [16]) continue to mature, the dissemina-
tion bottleneck has surfaced in many systems, both research [12]
and commercial [17]. Recently, the database community has made
some initial efforts [12, 24] in addressing this problem (further dis-
cussed in Section 6), but much research is still needed.

On the other hand, the networking research community has al-
ways focused on efficient notification dissemination. Notable mech-
anisms include multicast [2] and content-based networking [6]. With
multicast, the system defines a number of multicast groups, each
consisting of a set of subscribers, e.g., those who are interested
in Google’s stock. The network can efficiently disseminate the
same message to all members of the group. With content-based
networking, the system views each message as a tuple of attribute-
value pairs; e.g., attributes in a stock update message may include
SYMBOL, RISK, PRICE, EARNING, etc. Each subscription is defined
as a predicate over the message tuple; e.g., SYMBOL = ’GOOG’,
or RISK ∈ [20, 60] (between moderately low to medium risk).
The network is typically implemented by an overlay of nodes that
perform application-level routing. Each overlay node maintains
a summary of all subscriptions reachable from each of its outgo-
ing overlay links, and it forwards an incoming message onto an
outgoing link if the message matches the corresponding summary.
Both mechanisms, however, support only stateless subscriptions,
i.e., those that can be processed by examining the message itself.
For multicast, a message’s group id encodes its forwarding direc-
tions. For content-based networking, the message tuple contains all
the information needed to forward the message.

Traditional publish/subscribe systems have simple subscription
languages that support only stateless subscriptions. In many situa-
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Figure 1: Example STOCK table and range-min subscriptions.

tions, however, users may want updates to be further transformed,
correlated, and/or aggregated. For example, with a range-aggregate
subscription, a user can track the minimum PER (price-to-earning
ratio, a popular measure of stock quality) of stocks within a risk
range. This subscription is stateful, because just by looking at a
stock update message, the system cannot always tell whether or
how the message would affect the subscription. To meet the needs
of these users, we are developing a wide-area publish/subscribe
system that supports complex subscription definitions. The exam-
ples below discuss the range-min subscription in detail. Through
the discussion, we illustrate some of the challenges in supporting
such subscriptions, and preview several possible implementation
approaches.

EXAMPLE 1 (RANGE-MIN SUBSCRIPTIONS). Consider a pub-
lish/subscribe system that monitors the stock market for a large
number of traders over a wide-area network. Conceptually, the
system provides a database view STOCK(SYMBOL, RISK, PER, . . .)
that continuously tracks the up-to-date information for each stock.
Suppose that a user is interested in tracking the minimum PER of
stocks within a risk range [x1, x2] that she is comfortable with. She
can define a subscription over STOCK using a SQL query: SELECT
MIN(PER) FROM STOCK WHERE x1 <= RISK AND RISK <= x2.
To simplify discussion, let us focus on updates of PER, and assume
that each update message has the schema 〈SYMBOL, RISK, PER, . . .〉,
where PER is the new price-to-earning ratio after the update. When
such a message arrives, the system needs to notify those users whose
subscription query results are affected by the PER update.

The range-min subscription is stateful. To illustrate, consider the
current state of STOCK shown as a collection of points (labeled by ti

and shown in solid black) in Figure 1; the X-axis plots RISK, while
the Y -axis plots PER. Each range-min subscription (labeled by si)
is represented as an interval spanning the risk range of interest.

Suppose that an update lowers t4’s PER to just below that of t5
(indicated by a dotted line with arrow). This update should affect
subscriptions s3 and s4, but not s1, s2, or s5. For s1 through
s4, their ranges all cover t4’s RISK. In order to determine that
s3 and s4 are affected while s1 and s2 are not, the system must
be able to compare t4’s new PER with the minimum PER currently
maintained by each of these subscriptions; this latter information
is not available in the update message.

A more complicated situation arises when the current minimum
PER shared by a group of subscriptions is updated higher, poten-
tially exposing them to different new minima. For example, suppose
that an update raises t5’s PER, as illustrated in Figure 1. As a result
of this update, s3 should be updated with t3’s PER, while s4 should
be updated with t6’s PER. Neither piece of information is available
in t5’s update message. In general, the system must maintain the
entire state of the STOCK table in order to handle such updates.

EXAMPLE 2 (SUPPORTING RANGE-MIN SUBSCRIPTIONS).
Following the traditional database-centric approach, we can use
a server to maintain all subscriptions and the up-to-date state of

the STOCK table. Thus, for each incoming stock update message,
this server can easily compute which subscriptions are affected and
how they need to be updated. However, options for disseminating
these notifications are limited. (1) Unicast is the most natural way,
but can be inefficient for a large number of affected subscriptions.
(2) Content-based networking is difficult to leverage because of an
“impedance mismatch”: A content-based network performs match-
ing between messages and subscriptions in the network, while in
this database-centric approach the server has already computed
the list of affected subscriptions; converting this list back to a mes-
sage for dissemination in a content-based network is not straight-
forward, and would be a waste of resources because of duplicate
processing. (3) Multicast is a possibility, but to do a perfect job,
we would need a multicast group for every possible subset of the
subscriptions that could be affected by a stock update in the same
way. There may be a prohibitively large number of such groups (up
to 2m if every subset from a total of m subscriptions can form a
group), rendering multicast infeasible. Even if we restrict the prob-
lem to range-min subscriptions alone, it is unclear how to reduce
the space of possible groups. For example, in Figure 1, although
s2’s risk range contains that of s3, not every update affecting s3

would affect s2, and vice versa.
An alternative is to follow a network-centric approach. Content-

based networking is a natural starting point because it supports
range subscriptions. We can “relax” a range-min subscription
SELECT MIN(PER) FROM STOCK WHERE x1 <= RISK AND RISK

<= x2 to a range subscription SELECT * FROM STOCK WHERE x1

<= RISK AND RISK <= x2. The network would then forward to
each subscriber every stock update message that falls within her
risk range. Each subscriber locally maintains the content of the
range subscription from which the range-min subscription can be
derived. Note that all stocks in the range must be maintained (not
just ones with the minimum PER) in order to handle the case when
the minimum PER rises. Besides this maintenance overhead, a more
serious issue is that the relaxation of a stateful subscription into a
stateless one can potentially result in much more update traffic. For
example, in Figure 1, any PER movement of t4 above t5’s PER has
no effect on any subscriptions, but with this approach, all updates
of t4 would still be forwarded to s1 through s4 simply because t4
falls into their risk ranges.

The above examples show that efficient support of stateful sub-
scriptions is a challenging problem for wide-area publish/subscribe
systems. On one hand, existing network dissemination mechanisms
do not support stateful subscriptions directly. While it is possi-
ble to relax a stateful subscription into a stateless one and rely
on subscribers to perform additional local post-processing, doing
so requires unnecessarily large amounts of local subscription state
and high volumes of notifications. On the other hand, while the
database-centric approach can easily process stateful subscriptions
at a server, disseminating notifications over a wide-area network
remains difficult because of the inefficiency of unicasts and the dif-
ficulty in interfacing the server with advanced network dissemina-
tion mechanisms such as multicast and content-based networking.

In this paper, we argue that the key to the solution lies in properly
interfacing the database with the network, in order to combine the
processing power of database servers and the dissemination power
of the network effectively. In general, there is a wide spectrum
of possibilities for interfacing the database with the network and
for dividing up work between them. These possibilities provide an
interesting set of trade-offs in terms of efficiency, scalability, and
manageability of the system. To the best of our knowledge, there is
no prior work that investigates this spectrum of database/network
interaction models comprehensively. This unified perspective from



both databases and networking enables us to identify interesting hy-
brid solutions that outperform approaches that are either database-
centric or network-centric. Specifically, we make the following
contributions:
• We explore a number of points along the spectrum of possibil-

ities for interfacing database processing and network dissemi-
nation, and study their trade-offs. We show that efficient sup-
port of stateless subscriptions in a wide-area publish/subscribe
system calls for hybrid solutions with novel database/network
interfaces. We demonstrate through experiments with synthetic
and real stock datasets that our hybrid solutions offer orders-of-
magnitude performance improvement over approaches that are
either database-centric or network-centric.

• We formalize message and subscription reformulation as a gen-
eral mechanism for implementing stateful subscriptions using
a dissemination network that supports only stateless subscrip-
tions. Reformulation allows us to keep a simple and clean inter-
face between the database and the network, while at the same
time providing a comparable or higher level of efficiency com-
pared with much more complex system configurations that re-
quire application-specific extensions to routing. We have de-
veloped reformulation techniques for a number of stateful sub-
scriptions types including range aggregation/DISTINCT and joins.

• For range-min subscriptions, our reformulation technique is based
on the concept of Mar (Maximum Affected Range), for which
we have also developed new data structures and group process-
ing algorithms. These techniques are also applicable in process-
ing a group of continuous range-min/max queries, which is an
interesting problem in its own right.

2 Spectrum of Server/Network Interfaces
This section explores the spectrum of possibilities for interfacing
servers with a network in order to support stateful subscriptions ef-
ficiently. We start with a brief discussion of the database-centric
approach in Section 2.1. Then, Section 2.2 discusses the network-
centric approach, together with some background on content-based
networking and intuition behind how updates affect subscriptions,
which are useful also in later discussions. Section 2.3 describes
one of the main results of this paper—a hybrid approach that sup-
ports closer cooperation between servers and the network using
message/subscription reformulation.
Preliminaries The publish/subscribe system we are building of-
fers a conceptual (and possibly virtual) database over which users
can define subscriptions as SQL views. Publish messages are up-
dates to the database. If a database update causes the content of a
subscription view to change, we say that the database update (pub-
lish message) affects the subscription; in this case, the system needs
to send the subscriber a notification message containing the change
to the content of the subscription view.

To keep our discussion focused, we concentrate in this section on
supporting range-min subscriptions. These subscriptions are useful
in many situations where users are interesting in tracking the “best”
objects in ranges of their interest, e.g., stocks with the lowest price-
to-earning ratios within a risk range, or lowest-priced digital cam-
eras with at least 4.0 megapixels. The various server/network inter-
face approaches and the message/subscription reformulation mech-
anism that we are going to present later are completely general;
however, the actual reformulation technique may vary for different
subscription types. We discuss how to handle other subscription
types in Section 4.

Before proceeding, we give a classification of database updates
based on how they affect range-min subscriptions. To make our dis-

cussion concrete, recall from Example 1 the database table STOCK

(SYMBOL, RISK, PER, . . .) and range-min subscriptions of the form
SELECT MIN(PER) FROM STOCK WHERE x1 <= RISK AND RISK

<= x2. We call RISK the range attribute and PER the aggrega-
tion attribute. To simplify discussion in this section, we further
restrict ourselves to updates of the aggregation attribute (PER) only.
Insertions, deletions, and updates to other attributes require fairly
straightforward extensions, details of which are presented in [9].
Let ∆(t : x, yo → yn) denote an update of a stock t (with risk x)
that changes PER from yo to yn. This update falls into one of the
following categories:
• Ignorable updates. These are updates that, given the current

state of the database, cannot possibly affect any subscriptions.
In our running example, ∆(t : x, yo → yn) is ignorable if there
exists another stock t′ with the same risk x and a PER no higher
than both yo and yn. For example, the update of t7 in Figure 1
is ignorable because of t6.

• Non-ignorable updates. These are updates that may affect some
subscription (i.e. they are not ignorable). They are further clas-
sified into two types:
– Bad updates. These are non-ignorable updates whose ef-

fects on affected subscriptions cannot be determined from
the content of the update itself; additional information from
the database is required. In our running example, a non-
ignorable update ∆(t : x, yo → yn) is bad if it might “ex-
pose” a new minimum PER in some risk range. The update
of t5 in Figure 1 is an example of a bad update because it
exposes both t3 and t6.

– Good updates. A good update is a non-ignorable update that
is not bad, i.e., its effect on any affected subscription can
be determined from the content of the update itself. In our
running example, a non-ignorable update ∆(t : x, yo →
yn) is good if no other minimum PER is exposed due to that
update. The update of t4 in Figure 1 is such an example.

To recap, a decreasing update can be ignorable or good, whereas
an increasing update can be ignorable, bad, or occasionally good.
Note that this classification scheme does not take into account what
subscriptions are currently in the system. Such information can be
exploited for more efficiency (e.g., if there are no subscriptions, all
updates are effectively ignorable), but doing so also incurs some
extra overhead; we discuss this point further in Section 2.3.1.

2.1 Database-Centric Approaches
In this set of approaches, we follow the traditional database-centric
view of publish/subscribe—of first computing the updates to each
subscription, and then disseminating these updates. We assume
that a single server maintains the database state and keeps track
of all subscriptions. For each publish message, we can efficiently
compute all subscription updates in time sublinear in the size of
the database and the number of subscriptions, using our group-
processing techniques (presented in Section 3). The approaches
below differ mainly in how subscription updates are disseminated.

2.1.1 S-UN: Server with Unicast Network
With this approach, which we call S-UN, the server unicasts a sub-
scription update message to each affected subscription. For our
running example, the message has a constant size, and simply con-
tains the new minimum PER for the subscription. The problem with
this approach is that when many subscriptions are affected, there
will be a large amount of traffic overall, and the server can easily
become a bottleneck of dissemination.



2.1.2 S-MN: Server with Multicast Network
Multicast [2] is an efficient mechanism for disseminating messages
to a group of network destinations. Ideally, we would define a
multicast group for each subset of the subscriptions. After the
server computes all subscription updates, it checks to see which
subset of the affected subscriptions share the same update message,
and sends out this message to the multicast group consisting pre-
cisely of these subscriptions. However, both IP multicast [2] and
application-level multicast [7] techniques do not handle the need
for large number of groups (up to 2M for M subscriptions).

In this paper we resort to hierarchical application-level multi-
cast. This method builds a tree rooted at the server spanning all
nodes hosting subscriptions, with a moderate fan-out c. Each non-
leaf node and its children together form a multicast network with 2c

multicast groups, each supporting efficient application-level multi-
cast from the node to a subset of its children. Thus, this method
avoids the problem of having too many multicast groups by break-
ing down the dissemination task into a hierarchy of much smaller
multicasts with group number capped at 2c. The cost of doing so
is that the update message sent out by the server must list the set
of affected subscriptions; otherwise, a non-leaf node would not be
able to tell which children to forward the message to.

We call the above approach S-MN. The problems with using
multicast for publish/subscribe (large number of groups and large
message size) have also been identified by other work [4, 22, 24].
Possible solutions are: (1) Reduce number of groups [22] by ap-
proximating group membership in which case post-processing and
additional state are needed at subscribers. We have considered
some of these techniques, but the details are beyond the scope of
this paper. (2) Use compact, “semantic” descriptions of affected
subscriptions [4, 24] to avoid large update messages. This approach
gives a content-based network (that still does not handle stateful
subscriptions), which we consider next.

2.2 Network-Centric Approaches
At the other end of the spectrum, we have approaches that avoid the
use of servers altogether by making the network handle as much
subscription processing as possible. As discussed in Section 1, a
natural starting point is a content-based network [6], which sup-
ports stateless subscriptions defined as predicates over the content
of each message. Information about subscriptions is reflected in
the distributed routing state of the network, which allows an update
to be forwarded to affected subscriptions without intervention of
servers. We now explore how to extend basic content-based net-
working to support stateful subscriptions.

Background on Content-Based Networking Content-based net-
works can be implemented using various techniques. Since the sec-
tion focuses on range and range-min subscriptions, we discuss an
implementation based on a Content Addressable Network (CAN) [25]
similar to Meghdoot [15]. Meghdoot is designed to support only
range subscriptions; we later demonstrate how to extend it in dif-
ferent ways to support range-min subscriptions. At the heart of
Meghdoot is a CAN constructed as follows. Each attribute used
in range selection (e.g., RISK in our running example) is mapped
to two dimensions in the CAN space, one for the low end of the
range and the other for the high end. A range subscription can
then be represented as a point in this space. Figure 2 illustrates
a 2-d CAN, where each single-attribute range subscription over
[low i, highi] is mapped to the point (low i, highi). The space is
partitioned into rectangular zones, each with a zone owner—a net-
work node responsible for all the subscriptions in its zone. Each
zone has knowledge of only its neighbors and can route messages

only to them. Routing is carried out in multiple hops until the des-
tination is reached.

Meghdoot notifies affected range subscriptions as follows. Con-
sider an update to a tuple whose range attribute value is x. The
affected range subscriptions are precisely those in the upper-left
quadrant rooted at the point (x, x) (shown as a shaded region in
Figure 2). Subscriptions inside this quadrant are affected because
their ranges contain x; subscriptions outside this quadrant are un-
affected because their ranges do not contain x. Hence, Meghdoot
first routes the update message towards the point (x, x) which is
called the event point; the zone owner of that point then forwards
this message to the neighboring zone owners in the affected quad-
rant, which in turn forward the message upward and leftward to
their neighbors, and so on. CAN provides a convenient substrate to
implement this forwarding algorithm. Further details of this algo-
rithm can be found in [15].
2.2.1 CN: Serverless Content-Based Network
The straightforward way to support stateful subscriptions using a
content-based network, as already discussed in Example 2, is to
“relax” them into stateless subscriptions directly supported by the
network. We call this approach CN. For our running example,
Meghdoot can be used to support the stateless RISK-range subscrip-
tions relaxed from the stateful min-PER-over-RISK-range subscrip-
tions. Each subscriber locally maintains the content of the stateless
subscription queries, and uses post-processing to derive updates to
the stateful subscriptions.

The advantage of CN is its simplicity: We only need to extend
the capability of the subscribers; the network substrate remains un-
changed. The system does not require a central server, thereby re-
moving a potential bottleneck. The disadvantages of CN are ob-
vious too. All updates within the RISK range are sent to the sub-
scriber, even though most of them may be ignorable in practice.
Also, to cope with bad updates, each subscriber must maintain all
stocks within its RISK range, which is rather costly.

2.2.2 CN
+: CN with Additional Routing Logic

We can improve the efficiency of CN by exploiting additional infor-
mation in the database state maintained for each subscription. The
key observation regarding range-min subscriptions is the following
(recall the notation from the beginning of Section 2):

(Cutoff property) Suppose that update ∆(t : x, yo → yn)
does not affect a range-min subscription with range [x1, x2] 3
x because of another tuple t′ with range attribute value x′ ∈
[x1, x2] and aggregate attribute y′ ≤ min(yo, yn). Then the
update cannot affect any range-min subscription with range
[x′

1, x
′

2] ⊇ [min(x, x′), max(x, x′)].
For intuition, consider the example in Figure 1. Update of t4 does
not affect subscription s2 because of stock t2. The presence of t2
“protects” any range-min subscription whose range includes both
t4 and t2 (e.g., s1) from being affected by the update of t4. This
property allows us to cut off forwarding of update messages early,
instead of forwarding them all the way towards the upper-left cor-
ner of the CAN space as is done in CN.

Using our running example, for each range-min subscription,
CN

+ maintains a stock tuple with the minimum PER in subscrip-
tion’s RISK range. Decreasing PER updates are handled as follows.
A PER update to a stock with RISK x is first routed to the event
point. The zone owner of this point tags the message with a cutoff
point (c1, c2), initially set to (−∞,∞). This message is routed
upward and leftward as in Meghdoot, but with several differences.
First, the message is not forwarded outside the rectangle spanned
by the event point and the cutoff point. For each subscription in-
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side the rectangle (subscriptions outside cannot be affected), the
zone owner checks its currently maintained minimum PER to see if
it is affected. If not, it refines the cutoff point based on the RISK

value x′ of the stock with minimum PER. If x′ < x, we raise c1 to
x′; if x′ > x, we lower c2 to x′. The cutoff property is the basis
for this refinement. It is possible for CN

+ to handle increasing PER

updates, but the details are messy and we omit them here. 1

By attempting to cut off forwarding early, CN
+ has a big perfor-

mance advantage over CN. The disadvantage of CN
+ is its com-

plexity. CN
+ pushes a significant amount of application-specific

routing logic into the content-based network layer, and the special-
ized routing algorithms require access to additional state including
the contents of subscriptions and the database. The resulting sys-
tem is difficult to implement and maintain because of the lack of a
clean interface separating the network from the database.

2.3 Hybrid Approaches
Our goal in this section is to develop techniques that offer the same
or higher level of efficiency as CN

+, but without complicating the
network substrate with application-specific routing algorithms. To
achieve this goal, we need to rethink the traditional responsibili-
ties of servers in a publish/subscribe system, and divide the work
carefully between servers and the network. We seek to maximally
exploit the capability of a content-based network within the con-
fines of its standard interface. Recall that a content-based net-
work supports subscriptions defined as predicates over the content
of each message. In this section, we show that with our mes-
sage/subscription reformulation techniques, we can support state-
ful range-min subscriptions efficiently using stateless subscriptions
of the form “the data rectangle in the message contains the point of
interest.” Such subscriptions are a standard feature in most content-
based networks, e.g., [6]; in particular, we show that Meghdoot can
handle these subscriptions very efficiently with minimal extension.
While this section focuses on range-min subscriptions, we note that
message/subscription reformulation is a general mechanism; refor-
mulation techniques for other types of subscriptions will be dis-
cussed in Section 4.

2.3.1 S-CN: Server with Content-Based Network
Under this approach, which we term S-CN, a central server main-
tains the database state and is responsible for generating notifi-
cation messages and injecting them into a content-based network
for dissemination. Interestingly, the server does not need to know
the set of subscriptions, which makes S-CN particularly attractive
1On a high level, we distribute the entire database state along the diagonal
of the 2-d CAN space, which supports computation of any new minima
exposed by bad updates. We have also developed optimizations for sharing
this computation among multiple affected subscriptions.

when subscriber anonymity is desired, or when it is expensive for a
server to maintain a large, dynamic set of subscribers.
Message/Subscription Reformulation The key idea is for the server
to reformulate each publish message into zero or more notifica-
tion messages whose contents carry additional information derived
from the current database state. This additional information ef-
fectively removes the dependency of stateful subscriptions on the
database state. When stateful subscriptions register with the content-
based network, they are first reformulated into stateless subscrip-
tions (without any knowledge of the database state) to work with
the reformulated notification message format.

To illustrate the general reformulation mechanism, let us con-
sider a very naive reformulation technique as a warm-up exercise.
The server can simply embed the entire database state into each no-
tification message. Doing so obviously makes all stateful subscrip-
tions stateless, but it incurs too much overhead, and may exceed the
capability of most content-based networks as they may not support
full SQL queries over the message content. How to do better than
this naive technique requires non-trivial understanding of different
subscription types.
Mar-Based Reformulation It turns out that for range-min sub-
scriptions, there exists an efficient and effective reformulation based
on Mar (for Maximum Affected Range), which intuitively captures
an update’s “extent of influence” on range-min subscriptions. In-
formally, using our running example, the Mar of a stock t is the
maximum RISK range in which t has the minimum PER and is the
only stock with this PER. We formally define Mar below, where
a point (x, y) represents a tuple with range attribute value x and
aggregate attribute value y:

DEFINITION 1 (MAXIMUM AFFECTED RANGE). Mar(x0, y0),
the Mar of point (x0, y0) with respected to a set of distinct points P ,
is the maximum range (xl, xr) 3 x0 for which there exists no point
(x, y) ∈ P such that xl < x < xr and y ≤ y0. Let Mar(x0, y0) =
∅ if no such range exists; i.e., ∃(x0, y) ∈ P : y ≤ y0.

The Mar of an update δ = ∆(t : x, yo → yn), denoted Mar(δ),
is the union of Mar(x, yo) and Mar(x, yn), both of which are de-
fined with respect to the set of points representing all tuples in the
relation other than t.

For example, Figure 3 shows Mar(x0, y0) with respect to a set of
points (shown as solid black dots). Basically, Mar(x0, y0) is an
open interval between two points: the first one to the left of x0 and
the first one to right of x0, both with height less than or equal to
y0. As another example, in Figure 1, the Mar of the t5 update is
the range (20, 100). We show in Section 3 how to compute Mar

efficiently (in time logarithmic in the size of the database). The
following results (proofs omitted due to space constraints) establish
the utility of Mar in range-min subscription processing:



THEOREM 1. A range-min subscription with range [x1, x2] is
affected by an update δ if and only if x ∈ [x1, x2] ⊆ Mar(δ).

COROLLARY 1 (UPDATE CLASSIFICATION). Consider an up-
date δ = ∆(t : x, yo → yn). (1) If Mar(δ) = ∅, the update is
ignorable. (2) If Mar(δ) 6= ∅, and Mar(x, yo) ⊆ Mar(x, yn)
(with respect to the set of points representing all tuples other than
t), then the update is good, and the new minimum for any affected
range-min subscription is yn. (3) Otherwise, the update is bad.

Corollary 1 provides the tests for the server in S-CN to run in order
to classify each incoming database update. Furthermore, this corol-
lary leads immediately to the following reformulation techniques:
• (Message format) Each database update is reformulated into

zero or more notification messages of the form
〈NEW MIN, INNER L, INNER R, OUTER L, OUTER R〉

and injected into the network.
• (Subscriptions) Each range-min subscription over range [x1, x2]

is reformulated into a predicate
(OUTER L < x1 ≤ INNER L) ∧ (INNER R ≤ x2 < OUTER R)

over the notification message. Upon receiving a message match-
ing the reformulated predicate, a subscriber simply updates the
minimum to NEW MIN.

• (Ignorable updates) They are simply discarded by the server.
• (Good updates) Each good update ∆(t : x, yo → yn) is re-

formulated as 〈yn, x, x, x1, x2〉, where (x1, x2) = Mar(x, yn),
computed with respect to the set of points representing all tuples
other than t. For example, the good update ∆(t4 : 40, 12 → 4)
in Figure 1 is reformulated as 〈4, 40, 40, 20, 100〉.

Reformulating Bad Updates As we have seen in Example 1, a
bad update (such as the rise of t5’s PER in Figure 1) is tough to
handle because it “exposes” different new minima for different sub-
scriptions. Interestingly, with the help of Mar and the concept of
upper hull introduced below, we can capture all effects of a bad
update on affected subscriptions succinctly and precisely, and in
a way that allows the server in S-CN to encode them in the same
format as the reformulated notification messages for good updates.

DEFINITION 2 (UPPER HULL). Consider point (x0, y0) and
a set P of points. Suppose Mar(x0, y0) = [xl, xr] 6= ∅. Hull(x0, y0),
the upper hull of point (x0, y0) with respect to P , is the set of points
consisting of the following:
• The peak, denoted Peak(x0, y0), is the point (x0, y) ∈ P where

y is the smallest possible. Let the peak be (x0,∞) if no such
point exists, i.e., P has no point with X-coordinate of x0.

• The left upper hull, denoted LHull(x0, y0), is the set of all points
(x′, y′) ∈ P where xl < x′ < x0, and there exists no other
point (x, y) ∈ P such that (x′ ≤ x < x0) ∧ (y ≤ y′).

• The right upper hull, denoted RHull(x0, y0), is the set of all
points (x′, y′) ∈ P where x0 < x′ < xr, and there exists no
other point (x, y) ∈ P such that (x0 < x ≤ x′) ∧ (y ≤ y′).

For example, Figure 3 circles the points in Hull(x0, y0). Basically,
Hull(x0, y0) consists of the two “skylines” [23] that we observe by
looking towards left and right from (x0, y0). As it turns out, each
point (x′, y′) ∈ Hull(x0, y0) corresponds to a new minimum that
would be exposed by the removal of (x0, y0). Intuitively, using
Mar(x0, y0), we can capture the set of subscriptions that will have
y′ as their new minimum. This observation is formalized by the
following theorem:

THEOREM 2. Consider a bad update ∆(t : x, yo → yn). Let
P be the set of points representing the set of tuples after the update

has been applied. A range-min subscription with range [x1, x2] is
affected by the update if and only if there exists a point (x′, y′) ∈
Hull(x, yo) (with respect to P ) such that [min(x, x′), max(x, x′)] ⊆
[x1, x2] ⊆ EMar(x′, y′), where EMar(x′, y′) is the Exposed Max-
imum Affected Range of (x′, y′) with respect to P − {(x′, y′)}.
Furthermore, the new minimum for this affected subscription is y′.

Note that we have used EMar instead of Mar in the above theorem.
The two concepts are identical except the special case where two
points in P have the same Y -coordinate; this difference is rather
minor and does not affect the exposition in this section (see [9] for
a formal definition of EMar). Theorem 2 provides the basis for the
following technique for reformulating bad updates:
• (Bad updates) Given a bad update ∆(t : x, yo → yn), for

each point (x′, y′) ∈ Hull(x, yo), the server generates a no-
tification message 〈y′, min(x, x′), max(x, x′), x1, x2〉, where
(x1, x2) = EMar(x′, y′) (see Theorem 2 for what point sets
Hull and EMar are computed with respect to).

Both the notification message format and the behavior of reformu-
lated subscriptions are consistent with those for good updates. The
only difference is that the server generates more than one notifica-
tion message per bad update. As an example, the bad update ∆(t5 :
50, 5 → 9) in Figure 1 is reformulated as 3 notification messages:
〈9, 50, 50, 30, 70〉, 〈8, 30, 50, 20, 70〉, and 〈6, 50, 70, 20, 100〉.
Disseminating Reformulated Messages Recall that S-CN refor-
mulate a range-min subscription over range [x1, x2] into the fol-
lowing predicate over reformulated notification messages:

(OUTER L < x1 ≤ INNER L) ∧ (INNER R ≤ x2 < OUTER R).
We now illustrate how S-CN can disseminate messages to such sub-
scriptions efficiently using Meghdoot with minimal extension. As
in Section 2.2, we can picture each subscription as a point (x1, x2)
in a 2-d CAN space. Each reformulated notification message can
be seen as specifying two opposing corners (INNER L, INNER R)
and (OUTER L, OUTER R) of a rectangle in this space (as shown in
Figure 4). This message matches precisely those subscriptions that
fall within the rectangle. Meghdoot already knows how to dissem-
inate a message from a point along the diagonal of the CAN space
to its upper-left quadrant. To support dissemination to a rectangu-
lar region, we simply need to (1) start the Meghdoot forwarding
algorithm from the lower-right corner (INNER L, INNER R), and
(2) stop forwarding once the message goes beyond either OUTER L

or OUTER R. Note that this extension to Meghdoot is needed only
because Meghdoot is a very specialized content-based network de-
signed to support only range subscriptions. Many content-based
networks (e.g., [6]) allow subscriptions to be general predicates
over message content, and therefore should work with S-CN with-
out additional extension.

It is interesting to visualize the messages reformulated from good
and bad updates as rectangles in the CAN space. A good update is
reformulated into a single rectangle, with its lower-right corner cor-
responding to an 0-length range containing just the update position,
and its upper-left corner corresponding to the Mar of the update.
A bad update is reformulated into a collection of non-overlapping
rectangles, whose union is a big rectangle spanning the position
and Mar of the update (Figure 4).

As noted at the beginning of Section 2, we detect ignorable up-
dates without the knowledge of the active subscriptions in the sys-
tem. Thus, some non-ignorable updates may turn out to be effec-
tively ignorable because certain ranges may not be covered by sub-
scriptions. As a simple optimization, the server in S-CN can main-
tain the ranges of active subscriptions in the system, and perform a
check before injecting a notification message into the network. Do-
ing so would incur extra maintenance overhead; on the other hand,
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Figure 5: Example of an A2B-tree.

S-CN can still provide some protection of subscriber anonymity,
because the server only needs to know the subscription definitions,
but not who or where the subscribers are.
2.3.2 DS-CN: Distributing the Server in S-CN

We can replace the central server in S-CN with multiple servers
that together maintain the database in a distributed manner, result-
ing in an approach we call DS-CN. The idea is to leverage the net-
work substrate not only for disseminating notifications, but also for
distributing the database state. Consider again our running exam-
ple. Using CAN/Meghdoot as the network substrate, DS-CN maps
a stock with RISK x to a point (x, x) on the diagonal of the CAN
space. This stock would be maintained by the zone owner responsi-
ble for the corresponding point in the CAN space. In addition, each
zone owner along the diagonal maintains pointers to its two imme-
diate neighboring zone owners (left and right) along the diagonal.
When a PER update δ = ∆(t : x, yo → yn) enters the system, DS-

CN routes it to the zone owner responsible for (x, x). The zone
owner then initiates two linear, distributed traversals starting from
x: One traversal follows the left zone-owner pointers and the other
follows the right zone-owner pointers, until we have examined all
stocks in Mar(δ). This provides enough information to reformulate
the update (detailed omitted). The rest proceeds in the exact same
way as S-CN.

The advantage of DS-CN over S-CN is that there is no bottleneck
of a central server. Publish messages no longer need to rendezvous
at the same server, and reformulated notification messages are now
sent out from different servers. Furthermore, zone-splitting [15]
can be easily adapted to split diagonal zones that hold too much
database state to provide load balancing. Note that the two uses of
the network substrate by DS-CN—for disseminating notifications
and for distributing database state—are completely orthogonal; in
fact, we can use different overlay networks for the two purposes.

3 Server-Side Data Structures and Algorithms
We now discuss the data structures and algorithms to support the
approaches in Section 2. Due to space constraints, we only present
a brief description here while leaving detailed algorithms and com-
plexity analysis to [9]. In the following, we denote the range at-
tribute by X and the aggregate attribute by Y . We focus on process-
ing updates of the aggregate attribute below. The techniques can
be easily extended to general modifications, e.g., updates changing
both X and Y ; details of the extension are presented in [9].
Computing Mar A straightforward way to compute Mar for the
hybrid approaches of Section 2.3 is to use a B-tree on X . We scan
in two directions at leaf level on B-tree until we meet end points
of Mar. However, this method is not scalable as it incurs O(N/B)
I/Os in the worst case, where N is the size of the database table and
B is the block size.

We propose A2B-tree (augmented 2-tier B-tree) for computing
Mar. The upper tier is a B-tree on X . Each leaf index entry of this
upper-tier B-tree points to a lower-tier B-tree indexing all tuples

with the same X value, using Y as the index key. Further, each
upper-tier index entry (which points to either a child in the upper
tier or the root of lower-tier B-tree) is augmented with an extra
min field maintaining the minimum Y value found in the subtree
rooted at this index entry. An example A2B-tree is shown in the left
part of Figure 5. The space taken by this index is O(N/B), linear
in the size of the table. Both the height of the upper tier and the
height of the lower tier are bounded by O(logB N), so the com-
bined height is also O(logB N). A2B-tree supports lookups and
updates in O(logB N) I/Os. Lookup follows the standard B-tree
procedure, first using X as the search key through the upper tier,
and then using Y as the search key through the lower tier. Insertion
and deletion extend the standard B-tree procedures with mainte-
nance of min fields; for both operations, A2B-tree can be updated
in O(logB N) I/Os. Note that although the A2B-tree is similar in
structure to a traditional B-tree with a compound key obtained by
concatenating X and Y , the extra data stored in the upper level
enables us to compute Mar and Hull efficiently, as shown below.

We use a simple example to show how to compute Mar. Suppose
we want to compute the right end of Mar given point (x0, y0) =
(102, 3) in the left part of Figure 5 (finding the left end is anal-
ogous). At the top level, we first identify the subtree containing
x0 = 102. Since the min field of that index entry is 1, less than
y0 = 3, we follow the link to the subtree. At the new index node,
we scan from left to right until the first entry whose min is no
greater than y0 (subtree with key 120 in the figure), and go further
down to the next level. The traversal continues until we find the
right end of Mar, which is 112. The shaded entries in the right part
of Figure 5 are those visited by the search process. Clearly, the
number of I/Os incurred by this process is O(logB N). We give
the detailed algorithm in [9].

Computing Hull and EMar S-CN needs to compute Hull and
EMar to reformulate bad updates. Computation of Hull(x0, y0)
begins with identifying the peak, easily located by looking up x0

in the A2B-tree. Starting from the peak, we iteratively invoke a
procedure similar to the one described above for finding the right
end of Mar; each right end identified becomes the starting point
for the next invocation. This process stops as soon as it finds all
points in RHull; LHull is computed analogously. Since each step
of this process takes O(logB N) I/Os, the total cost for comput-
ing Hull is O(k logB N), where k is the number of points in Hull.
Computation of EMar for points in Hull exploits the fact that such
points happen to be the EMar end points that we want to com-
pute (as illustrated in Figure 3). Using the lists of RHull and LHull

points produced by Hull computation, which are naturally sorted by
X in increasing and decreasing orders respectively, we can com-
pute EMar for all points in Hull using a merge-like procedure in
O(k) time. Therefore, all outgoing messages can be computed in
O(k logB N), where k is the number of points in Hull and also the
number of unique notification messages. See [9] for details.

In summary, message reformulation for S-CN is very efficient:
Each outgoing message costs only O(logB N) to generate, and po-
tentially services a huge number of subscribers. Note that the total
cost of message reformulation is independent of the number of sub-
scriptions in the system; in fact, the reformulation procedure does
not need to look at any subscriptions. This property makes S-CN

extremely appealing for large-scale publish/subscribe systems.

S-UN and S-MN Support Messages for unicast and multicast
(Sections 2.1.1 and 2.1.2) can also be computed by leveraging above
techniques. We compute reformulated messages for each incoming
update as in S-CN, but instead of disseminating them, we treat each
message as a query identifying the set of affected subscriptions. As



in Figure 2, we view the range-min subscriptions as points in a 2-d
space, and store them using a 2-d index that supports rectangular
queries. An external-memory kd-tree, for example, would support
such a query in O(

p

M/B +J/B) time, where J is the number of
subscriptions in the query rectangle. S-UN generates one unicast
message for each such subscription; S-MN generates one multicast
message that encodes this set of subscriptions. Overall, for an up-
date with k reformulated messages in S-CN affecting a total of A
out of M subscriptions, the server-side processing costs incurred
by S-UN and S-MN are O(k logB N + k

p

M/B + A/B), com-
pared with O(k logB N) for S-CN.

4 Other Subscription Types
In this section, we briefly discuss how to handle other subscrip-
tions with a hybrid approach such as S-CN, using our general mes-
sage/subscription reformulation mechanism.

Range-max subscriptions can be handled by the same techniques
as range-min. Range-count/sum/average subscriptions are easier to
handle: We simply reformulate them into range subscriptions with-
out aggregation; publish messages do not need to be reformulated
(though obviously irrelevant updates can be ignored, e.g., those
updating neither range nor aggregation attributes). Unlike range-
min/max, relaxing these range-aggregation subscriptions would not
result in excessive traffic, because relevant updates that fall within
a subscription range generally do affect the subscription.

A range-DISTINCT subscription tracks the set of distinct values
of an attribute Y for tuples whose range attribute X fall within
some range. Simply relaxing this subscription into a range sub-
scription may generate a lot of unnecessary traffic if there are many
duplicates. In this case, we can extend the concept of Mar as fol-
lows: Mar of an insertion (or deletion) is the maximum X range
that contains the insertion (or deletion) point and no other tuples
with the same Y value. An insertion (or deletion) is reformulated
into a message containing X and Y values and the Mar, if it is
not empty. A range-DISTINCT subscription is reformulated into a
stateless selection subscription that checks if the subscription range
contains the X value and is also contained by the Mar.

We have also extended techniques for 1-d range-aggregation and
range-DISTINCT subscriptions to multiple dimensions, where each
subscription can specify orthogonal range conditions for multiple
attributes. In higher dimensions, Mar is the union of a collection
of hypercubes cornered at the update point. Both Mar and Hull be-
come complex shapes in higher dimensions, and reformulated mes-
sages no longer have constant size even for good updates (see [9]
for details). One way of coping with this complexity is to relax
Mar into a simpler bounding region, and use subscriber state to
filter false positives.

Finally, select-join subscriptions are stateful as well. Given a
publish message that applies an update δR to table R, its effect on
subscription σp(σpR

R ./ σpS
S) is σp(σpR

{δR} ./ σpS
S), which

requires accessing state (content of table S) not in the original up-
date message. Following the message/subscription reformulation
approach, a server maintaining the database state can reformulate
each δR into a series of notification messages, each containing a
result tuple in {δR} ./ S. Meanwhile, the select-join subscription
σp(σpR

R./σpS
S) is reformulated into a stateless subscription that

checks condition p ∧ pR ∧ pS over reformulated messages.
In a publish/subscribe system that uses a single network sub-

strate to support more than one types of subscriptions, we use an
additional TYPE field in reformulated messages to distinguish those
intended for different types of subscriptions. A reformulated sub-
scription would also include an extra condition that selects notifi-
cation messages with the appropriate TYPE value.

5 Evaluation
Implementation Details On the server side, we implemented all
processing techniques in Section 3. The server module supports
well-defined network interfaces to a regular network for unicast and
multicast, and CAN for S-CN. On the network side, we have imple-
mented a network simulator for a large-scale publish/subscribe sys-
tem. The first phase of network simulation generates application-
level routing details that are used by a second phase which can
accept any topology generated using INET [10], an Internet-like
network topology generator. This phase performs a link-level sim-
ulation of the network topology. We support a number of dissemi-
nation styles, as discussed next.

For unicast from a central server, we assume that the route fol-
lows the shortest path over the underlying IP substrate from the
server to the destination. In case of multicast from a central server,
the network simulator uses the hierarchical application-level multi-
cast introduced in Section 2.1.2. The multicast hierarchy is created
by first assigning coordinates to all nodes using Global Network Po-
sitioning (GNP) [21], and then applying k-means clustering recur-
sively to construct the hierarchy. Each node builds an application-
level multicast tree for each possible subset of its children using a
standard [18] greedy algorithm for constructing a bottleneck band-
width tree. Details are omitted due to space reasons. Note that the
message reaching a node N needs to encode the exact set of desti-
nations located below N (to compute the set of affected children).

We use the Meghdoot simulator [15] in order to evaluate the
basic CN approach with just range predicates (described in Sec-
tion 2.2), without specialized techniques to handle more compli-
cated queries. The simulator is augmented with our link-level sim-
ulator for more accurate routing statistics. In order to support the
sophisticated techniques used in S-CN (such as Mar) and DS-CN

(such as diagonal two-way routing), we implemented appropriate
extensions to the simulator. CN

+ (with early cutoff) was imple-
mented for decreasing updates only.
Evaluation Metrics We use both server- and network-side met-
rics for evaluation. On the server-side, we track processing time,
which is measured as the period between the time at which an up-
date arrives at the server and the time at which the server com-
pletes generation of all outgoing messages for dissemination. On
the network-side, we track, for each event: (1) Number of overlay
message hops: This is the total number of messages sent between
overlay nodes, in order to process and disseminate that event. (2)
Number of IP message hops: This the number of hops over IP-level
links, during dissemination of an event. An overlay hop may tra-
verse a number of IP-level links on its path. (3) Network traffic: We
define network traffic as the total number of bytes that need to be
transferred between overlay nodes during dissemination. (4) Max-
imum node stress (MNS): We define node stress as the number of
overlay messages originating from a node. MNS for an event is the
highest node stress among all nodes while processing that event.
Workload We use normal distributions to generate a synthetic work-
load of 1-d range-min subscriptions. To simulate “hot” ranges at-
tracting more subscriber interest, the position of the subscription
interval is normally distributed around the center of the domain of
the local selection attribute. The interval length also follows a nor-
mal distribution. This subscription workload is used with both syn-
thetic and real update workloads.

Our synthetic update workload consists initially of a database
that contains between 10, 000 and 100, 000 tuples uniformly dis-
tributed in the domain. We generate 200, 000 events (long enough
to reach stable measurements), each being an update of the aggre-
gate attribute PER, and collect the measurements of each update.



All experimental parameters are summarized in Table 1. We vary
one or more of these parameters to perform experiments with vary-
ing database size, number of subscriptions, percentage of ignorable
updates, and the average number of subscriptions affected.

We update a tuple by increasing or decreasing its output attribute
using a random walk model. The step depends on the current value
and updates are independent of each other. Each random variable
(tuple) in this model is actually an irreducible, finite, and aperiodic
Markov chain; hence there exists a stationary distribution for the
value of each tuple. Consequently, update statistics such as the
number of subscriptions affected by an update will be stationary
over time. Our simulation is long enough to ensure convergence.
Detailed proof of convergence of our update model is omitted for
brevity. To make the workload more realistic, we also introduce
a small percentage of spikes. A spike is an update where the PER

drops suddenly (affecting a large number of subscriptions) and then
bounces back to its old value. Finally, we also use a real update
workload based on stock data from Yahoo! Finance [14].
Experimental Setup We perform detailed link-level simulation of
a 20, 000-node INET topology. Of these, 1000 nodes are chosen as
the end nodes participating in an overlay network. Events are gen-
erated by publishers randomly scattered throughout the network.

We assume that publishers are distributed throughout the net-
work. We do not model the message hop from the publisher to the
server/event point, because this cost would be incurred in all sys-
tems. If the publisher is not a part of the CAN, it could contact
some peer as an entry point into the CAN. Similarly, subscriptions
could be distributed throughout the network, but each subscription
chooses a peer in the overlay network as its gateway to the CAN.
We use the following technique to choose a gateway in our exper-
iments. In CAN-based techniques, the zone owner is chosen as
the gateway for all subscriptions that map to that zone. The same
mapping is used in all the compared approaches. We assume that
subscriptions reside at the gateway and do not model the propaga-
tion of messages from the gateway to the end subscriber. In case of
multicast, the network-side metrics for each group ID at each node
in the hierarchy are precomputed to speed up the simulation. In
addition, c is fixed at 10 so that no more than 1024 multicast trees
need to be stored at any node in the system.
Experiments and Results
Demonstration of Scalability In this set of experiments, we com-
pare the techniques in terms of their ability to scale to large num-
bers of tuples and subscriptions. On the server side, we compare the
average processing time per update for S-CN, unicast and multicast
(recall that CN and DS-CN do not have a central server). On the
network side, we compare the average network traffic (bytes) gen-
erated per event. All updates are non-ignorable and the percentage
of spikes is 0.5%.

We first vary the database size from 10, 000 to 100, 000 tuples,
for 500, 000 subscriptions. Figures 6 and 7 show the server- and
network-side costs respectively. On the network side, CN, S-CN,
and DS-CN perform much better than unicast and multicast, and
the average network traffic is independent of database size. Note
that we have shown network traffic in log scale on the y-axis be-
cause of the order of magnitude difference between the various ap-
proaches. Among these three approaches, DS-CN performs the
best in terms of traffic as the diagonal traversal usually takes very
few hops. S-CN is next, the main factor for performing worse than
DS-CN is the cost of routing from the server to the event point.
This is followed by CN. Among central server approaches, S-CN

achieves the lowest processing time, and its processing time in-
creases only by 20% when the database size increases by a fac-

tor of 10. The processing time of multicast is roughly 50-70%
higher than S-CN due to the cost of identifying all affected sub-
scriptions. The trend for multicast is flat because the slight increase
in processing time over increasing database size is compensated by
a decreasing number of affected subscriptions: a larger database
gives a subscription more resistance against update. However, the
network-side performance of multicast is the worst because the set
of affected subscriptions needs to be encoded in each message, even
though the number of multicast messages may be small. Unicast
performs badly on both server- and network-side due to the high
cost of assembling and disseminating outgoing messages for each
affected subscription. The processing time of unicast also benefits
from a larger database.

Next, we keep the database size at 10, 000 tuples and vary the
number of subscriptions from 100, 000 to 1 million. Figures 8
and 9 show scalability on the server and network side respectively.
S-CN is completely independent of subscriptions; thus, both its
processing time and network traffic is approximately constant. The
three approaches of CN, S-CN, and DS-CN perform well with traf-
fic never rising above 1kB. All these approaches are independent
of the number of subscriptions, which makes them scalable. The
processing time of multicast increases over number of subscrip-
tions. Unicast also increases but it performs much worse due to
the overhead of memory allocation for constructing objects corre-
sponding to outgoing messages (there are many outgoing messages
for unicast). Even if we can optimize it using bulk memory al-
location, it cannot beat multicast, which is worse than S-CN. On
the network side, multicast is good in terms of number of over-
lay hops (not shown) but it performs badly in terms of total traf-
fic generated. Tables 2 and 3 compare the number of outgoing
messages (from server) of S-CN and unicast for the two sets of
experiments. In all cases, S-CN saves more than 99% of outgo-
ing messages. We also evaluated CN

+ for the portion of workload
with decreasing updates. We found that early stopping is effective
and results in traffic reduction of more than 98% compared to CN.
Early stopping in CN

+ (for decreasing updates) was around 2%
less effective in terms of traffic than the Mar-based stop conditions
in S-CN. However, handling increasing updates in CN

+ is com-
plex (as discussed earlier) and would cause more traffic. We do not
advocate CN

+ because it pushes a significant amount of complex
application-specific routing logic into the network layer.
Varying Percentage of Ignorable Updates We next demonstrate
the effect of increasing the percentage of ignorable updates I . To
better control the parameter, we use a subscription distribution where
the midpoint of the selection range is taken from a normal distri-
bution N (5000, 10000) and the length is taken from a normal dis-
tribution N (50, 10). There are no spikes introduced. Figure 10
shows results for three network metrics. The left figure shows the
average number of overlay hops per event, while the middle figure
shows the average network traffic (in bytes) per event, for all ap-
proaches. The serverless CN approach is independent of I because
we cannot truncate ignorable updates. As I is increased, the per-
formance of all the approaches except CN improves and, for high
values of I , CN becomes the worst approach. For high values of
I , serverless approaches are less desirable as they are unable to
detect and truncate ignorable events. However, DS-CN still per-
forms well because in most cases where an update is ignorable, it
can be detected at the zone owner containing the event point it-
self. Overall, the best performance is achieved by DS-CN. Multi-
cast performs quite well in terms of number of overlay messages,
with S-CN following up in third position. However, as the middle
figure shows, multicast is the worst in terms of total network traffic
(due to message size). The right figure shows the average number



parameter value
number of overlay nodes 1000
number of physical nodes 20, 000

domain of range select attribute [0, 10, 000]
domain of aggregate attribute [0, 10, 000]

number of subscriptions 100k − 1M

midpoint of selection range N (5000, 1500)
length of selection range N (1000, 1000)

number of tuples in initial DB 10k − 100k

number of simulation events 200, 000
percentage of spiked events 0.5%

Table 1: Summary of all parameters used
in experiments.
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Figure 6: Avg. processing time; increasing
database size.
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Figure 7: Avg. network traffic; increasing
database size.

db size 20K 40K 60K 80K 100K

S-CN 2.10 2.15 2.18 2.20 2.22
Unicast 726 671 678 655 654

Table 2: Number of outgoing messages
from server, varying database size.

# subs. 200K 400K 600K 800K 1M

S-CN 2.08 2.08 2.08 2.08 2.08
Unicast 303 616 909 1218 1441

Table 3: Number of outgoing messages
from server, varying num. of subscriptions.
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Figure 8: Avg. processing time; increasing
number of subscriptions.
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Figure 9: Avg. network traffic; increasing
number of subscriptions.

of IP-level hops per event, for each of the various approaches. The
trends are similar to those of overlay hops. In further experiments,
due to space reasons, we show only the average network traffic (in
bytes) for various approaches; the other metrics were found to fol-
low similar trends as described here, in all our experiments. In
summary, the single server-based S-CN and the distributed DS-CN

perform the best as the messages encode the affected subscriptions
very compactly and messages are sent only to those CAN regions
which could be affected by the event.

Varying Number of Affected Subscriptions We increase the av-
erage number of subscriptions affected by a non-ignorable update
by controlling the percentage of spikes which affect a large num-
ber of subscriptions. All updates are non-ignorable. The number
of subscriptions is 500, 000 and the database size is 50, 000 tu-
ples. Figure 11 shows the performance of each of the approaches
in terms of average network traffic (in bytes). From the figure, we
see that unicast and multicast worsen in performance linearly with
increase in average number of affected subscriptions. CN is inde-
pendent of this parameter and hence shows a flat line. The network
traffic generated by S-CN increases very slightly across the work-
loads as seen from the figure. This is due to larger average Mar as a
result of increasing percentage of spikes. Finally, DS-CN shows an
increasing trend; the reason is that since spikes have a large Mar,
the diagonal traversal generates more traffic. In real workloads,
such updates with large Mar are extremely rare.

Distribution of Network Traffic We plot the CDF (over events) of
network traffic for all approaches, in Figure 12. There are 500, 000
subscriptions and 10, 000 database tuples. The percentage of ig-
norable updates is 21%. From the CDF, we see that S-CN, CN, and
DS-CN perform well with average network traffic generated by an
event less than 1kB for nearly all events. DS-CN is seen to be the
most efficient as nearly 87% of events do not generate any traffic.
S-CN also performs well but only the ignorable updates generate

no traffic (other events need to be routed to the event point). How-
ever, nearly 97% of events generate traffic of less than 1kB. The
performance of CN is worse. Around 94% of events generate less
than 1kB traffic, but more than half the events generate 320 bytes
or more traffic. Unicast and multicast perform poorly overall as
expected. However, these approaches perform well for events that
affect few or no subscriptions: as a result, more than 77% of mes-
sages cause network traffic of fewer than 100 bytes. But, the per-
formance degrades rather rapidly for the rest of the events, making
these approaches very bad overall. Traffic of upto 680kB is seen
for some events that affect a large number of subscriptions. We also
compared the highest maximum node stress (MNS) across events
and found that unicast was the worst (10, 282). Multicast, CN, S-

CN, and DS-CN had a highest MNS of 3, 8, 23 and 25 respectively.

Experiments on a Real Dataset In order to evaluate our tech-
niques on a real trace, we obtained information for 3053 stocks
from Yahoo! Finance [14]. We gathered data for earnings per stock
(EPS) for each of the stocks. In addition, computed the average
recommendation over the past month (RECO) for each stock. RECO
varies from 1.0 (strong buy) to 5.0 (strong sell). We collected open
and close price data over the course of 60 days, and used EPS to
compute PER for each price. We thus obtained a trace of events,
each being an update of PER with RECO constant. The trace had
338, 415 events. 11.7% of the events were non-ignorable events.
Note that although this trace has only two events per day, real-time
stock prices over the course of the day would follow a similar up-
date trend, with several thousand updates generated every few sec-
onds. This would need efficient database/network coordination to
scale to large subscription sets.

We generated 500, 000 subscriptions; each subscription requests
the minimum PER over a specified RECO range. This is a meaningful
query because stocks with lower PER are intuitively better. More-
over, people may desire stocks rated at different ranges of RECO.

Figure 13 shows the average network traffic per event as we in-
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Figure 10: Performance of various approaches, varying the percentage of ignorable updates.
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Figure 11: Traffic vs. # affected subs.
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Figure 12: CDF of network traffic.
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Figure 13: Result of real workload.

crease the number of subscriptions. We see that S-CN and DS-CN

generate orders of magnitude lesser traffic than CN, unicast, and
multicast. Both unicast and multicast do not scale well; their per-
formances degrade linearly with increase in number of subscrip-
tions. CN shows constant but bad performance. S-CN and DS-CN

perform very well and are both independent of number of subscrip-
tions. They generate less than 100 bytes of network traffic per event
on the average, with maximum node stress never rising above 10.

6 Related Work
Publish/Subscribe Systems Recently, research efforts have been
focused on content-based publish subscribe systems which provide
fine granularity and flexibility. These can be broadly characterized
as systems where publishers publish events following a particular
predefined schema, and subscribers express their interests as pro-
files [12] which are predicates over the schema. A large number
of such systems have been built in recent years, e.g., SIFT [28]
(for text documents), ONYX [12] (for filtering and transforma-
tion of XML messages), and the wide-area event notification ser-
vice [5]. In all these systems, subscriptions are stateless filters de-
fined over individual messages, so they cannot express queries of
interest across different messages or over the event history. Profiles
are not powerful enough to accommodate stateful SQL-style sub-
scription requirements. ONYX supports on-the-fly transformation
of an XML message according to a subset of XQuery; but filtering
and transformations are still limited to individual messages. A few
continuous query systems also support rich query languages. Un-
fortunately, these do not address the problem of efficiently deliver-
ing updates over a network. ONYX has begun addressing this prob-
lem, but its focus on supporting transformation of XML messages
is different from our goal of supporting more general stateful SQL
subscriptions that cannot be processed on individual messages.

Database-side Processing Continuous query systems [19, 11] and
stream processing systems [1] can be regarded as a form of pub-
lish/subscribe system where continuous queries over streams cor-

respond to our subscriptions. These systems provide automatic no-
tification whenever a continuous query result changes.

The idea of group processing has been identified and used in
trigger processing and continuous query processing systems [16,
11]. Work on scalable database trigger processing [16] focuses on
exploiting common patterns in triggering conditions (like our noti-
fication conditions). Work on scalable continuous query processing
(e.g., [11, 20]) focuses on exploiting common patterns in continu-
ous queries (like our subscription queries). In particular, predicate
and query indexing techniques have been developed in [16, 11, 13]
to speed up group processing. The upper hull computed for dis-
semination is similar to computing dynamic skyline in [23]. Their
algorithm is based on regular R-tree, which cannot offer the same
guaranteed performance as our A2B-tree.

Network Dissemination A server needs to deliver notifications to
affected subscribers over a network. The problem of efficient mes-
sage delivery has long been tackled in networking and distributed
systems research. The traditional delivery mechanism is based on
client polling. The next generation of delivery mechanism uses real
push techniques based on group-based multicast protocols, e.g., IP
multicast. Multicast provides a perfect interface for channel-based
subscription services. IP multicast has also been exploited in build-
ing publish/subscribe systems that support more general filter-style
subscriptions [22]. Because of slow adoption of IP multicast, there
have been proposals for supporting application-level multicast us-
ing an overlay network (e.g., [7]). Oftentimes, they use an overlay
network called distributed hash tables, which provide a convenient
hash table abstraction over the participating overlay nodes. The
problems with multicast were discussed in Section 2.1.2.

An alternative dissemination interface is content-based network-
ing [6, 3, 8]. A content-based network can be used to implement a
publish/subscribe system supporting filter subscriptions. A number
of such systems have been developed (e.g., [27, 26, 15]). Sem-
Cast [24] proposes a number of techniques for efficient dissemina-
tion including the use of dynamic statistics. However, subscriptions
in all these systems are limited to stateless filters. Nevertheless,



they can still be used by our system as the messaging layer for de-
livering notifications once they are computed. We use message and
subscription reformulation to enable traditional content-based net-
works to handle stateful queries.

7 Conclusions
We approach the construction of large-scale publish/subscribe sys-
tems by viewing the problem from the perspective of the interface
between the database and the network. Different techniques vary
in the degree of database/network cooperation; some are more suit-
able than others for certain types of queries and/or workloads. The
tradeoffs are illustrated by the following table, which compares
techniques based on how they handle stateful subscriptions.

Tech- Network side Server side Implemen-
nique Traffic MNS State (subs) Processing State tation cost
S-UN Very high High None Medium High Low
S-MN Very high Low None Medium High Low
CN High Low High None None Medium

CN
+ Medium Low Medium None None High

S-CN Low Low Low Low Low Medium
DS-CN Low Low Low None None Medium

It is clear that each technique has its strengths and weaknesses.
For example, although unicast does not require state at subscrip-
tions, the update traffic is very high. CN

+ introduces application-
specific logic into the network and needs per-subscription state. S-

CN and DS-CN perform well overall, with dramatic reduction in
traffic at low server-side processing cost. We showed that simply
converting a stateful subscription to a stateless one does not yield
a scalable solution. Our message and subscription reformulation
mechanisms are better because they can efficiently embed state in-
formation into messages. It is possible for a normal content-based
network (which can handle only stateless subscriptions) to handle
several classes of stateful subscriptions efficiently: the key is to
transform events into a semantic description of affected subscrip-
tions, and subscriptions into a predicate over the semantic descrip-
tion. We demonstrated this using several query classes including
range aggregation, distinct, and join. We experimentally validated
our techniques for range aggregation, and showed that it is possible
to achieve orders-of-magnitude improvement over a naive transfor-
mation of the stateful subscription to a stateless one.
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