
Query Suspend and Resume
Badrish Chandramouli

Duke University
badrish@cs.duke.edu

Christopher N. Bond
Google Inc.

chrisbond@google.com

Shivnath Babu
Duke University

shivnath@cs.duke.edu

Jun Yang
Duke University

junyang@cs.duke.edu

Abstract
Suppose a long-running analytical query is executing on a database server and

has been allocated a large amount of physical memory. A high-priority task comes
in and we need to run it immediately with all available resources. We have several
choices. We could swap out the old query to disk, but writing out a large execution
state may take too much time. Another option is to terminate the old query and
restart it after the new task completes, but we would waste all the work already
performed by the old query. Yet another alternative is to periodically checkpoint
the query during execution, but traditional synchronous checkpointing carries high
overhead. In this work, we advocate a database-centric approach to implementing
query suspension and resumption, with negligible execution overhead, bounded
suspension cost, and efficient resumption. The basic idea is to let each physical
query operator perform lightweight checkpointing according to its own seman-
tics, and coordinate asynchronous checkpoints among operators through a novel
contracting mechanism. At the time of suspension, we find an optimized sus-
pend plan for the query, which may involve a combination of dumping current
state to disk and going back to previous checkpoints. The plan seeks to mini-
mize the suspend/resume overhead while observing the constraint on suspension
time. Our approach requires only small changes to the iterator interface, which we
have implemented in the PREDATOR database system. Experiments with our im-
plementation demonstrate significant advantages of our approach over traditional
alternatives.

1 Introduction
Consider a database management system (DBMS) processing a long-running memory-
intensive analytical query Qlo . Suppose another memory-intensive query Qhi with
much higher priority is now submitted to the DBMS. The result of Qhi may be needed
to make a real-time decision, so we need to process Qhi as quickly as possible and
with all available resources. Ideally, the DBMS should suspend the execution of Qlo ,
quickly release all resources held by Qlo , and start Qhi using all resources. Query

Qlo can be resumed once Qhi finishes execution, ideally without losing any significant
fraction of the work that Qlo has done prior to suspend. In this work, we address the
problem of implementing query suspend and resume efficiently in a DBMS.

Query suspend and resume are important in many settings:
• Queries with different priorities: Today, DBMSs are often used for mixed work-

loads, with both high-priority, real-time decision-making queries and low-priority,
non-customer-facing analytical queries (e.g., OLAP, mining). Typically, DBMSs
run low-priority queries whenever high-priority queries are not running. However,
with 24×7 operations, the window of time a DBMS can devote fully to low-priority
resource-intensive queries becomes smaller and increasingly fragmented. To max-
imize resource utilization in this setting, it is important for the DBMS to be able
to quickly suspend long-running, low-priority queries when high-priority queries
arrive; the suspended queries can be resumed when the high-priority ones have
completed.

• Utility and Grid settings: Queries are now run frequently on computational utilities
(e.g., Condor [3]) and Grids [4] composed of autonomous resources. When the
owner of resources wants to use them, queries running on these resources must
release control quickly, and migrate to other resources.

• Software rejuvenation: Benefits of software rejuvenation [6], the practice of reboot-
ing enterprise computing systems regularly, are now recognized widely. Reboot
is critical when performance degrades due to resource exhaustion caused by re-
source leaks. Query suspend and resume is important in this setting because (1) the
challenge of predicting query completion times accurately (e.g., see [15]) makes it
difficult to schedule query completion to match a rejuvenation schedule; (2) when
performance degrades, it may not be cost-effective to wait for all running queries to
complete before rebooting the system.

• DBMS maintenance: Various maintenance utilities—e.g., statistics update, index
rebuild, data repartitioning—need to be run regularly on a DBMS to ensure good
performance. Support for suspending and resuming long-running queries gives
administrators and self-tuning DBMSs more flexibility in scheduling maintenance
utilities.
Query suspend and resume can be handled in different ways. The query Qlo to

be suspended can be killed, and restarted during resume. Killing and restarting Qlo

wastes time and resources, particularly if Qlo has already performed a lot of work.
Furthermore, a kill-and-restart approach can lead to starvation of the query in a setting
where suspend requests are common (e.g., in a shared Grid running on autonomous
resources).

Query suspend can be partially achieved in some DBMSs by reducing the priority
of the process running Qlo , e.g., using the renice command in UNIX. Usually, such ap-
proaches affect only the CPU utilization directly, and are ineffective or take a long time
to release resources held by memory, I/O, or network-intensive plans. Some DBMSs
and operating systems (OSs) provide utilities (e.g., IBM DB2’s Query Patroller [9]) to
limit the resources allocated to low-priority queries so that high-priority queries will
always find free resources. None of these techniques provides a suspend/resume func-
tionality that meets the needs of plan migration, software rejuvenation, and DBMS

2

maintenance.
Another technique to suspend Qlo is to write out its entire in-memory execution

state to disk, like an OS process swap under heavy memory contention. This technique
can have high overhead because queries can easily use gigabytes of memory in modern
systems with large memory. For instance, writing 1 GB of data to disk in 1-KB chunks
can take up to 90 seconds in a modern system. Writing through storage managers (e.g.,
SHORE [2]) often involves additional system overhead. To make matters worse, in a
Grid setting where Qlo needs to be migrated elsewhere, dumping state over the network
can have an order of magnitude higher overhead.

Challenges and Contributions We have discussed why we need a better solution
for query suspend and resume. In search for this solution, we first point out two well-
known ideas on how to deal with the execution state of a data flow for suspend and
resume.
• The entire state can be dumped to disk on suspend, and read back on resume, like an

OS-style process swap. While dumping is simple to implement, it can cause high
overhead during both suspend and resume.

• The state can be checkpointed at selected points during execution. Suspension keeps
track of the exact suspend point; resumption starts from the last checkpoint, rolls
forward to the suspend point, and then continues execution. Checkpointing min-
imizes suspend-time overhead and avoids redoing the work performed up to the
last checkpoint. However, checkpointing (1) incurs overhead during execution, and
(2) has to redo the work done since the last checkpoint.
Although the general ideas of dumping and checkpointing have been studied in

various systems (e.g., [13]), unique challenges and opportunities arise when suspend-
ing and resuming DBMS queries, which are complex data flows consisting of physical
query operators with well-understood behavior. We next illustrate some of these chal-
lenges and opportunities.

Example 1 (Running example). Figure 1 shows a simple execution plan for R./S./T
consisting of two block-based nested loop joins (NLJ for short) [5] and three table
scans. We will use this operator tree as a running example in this report. During each
iteration of an NLJ outer loop, the operator first reads output tuples from the outer
child to fill a large in-memory outer buffer, and then performs joins while reading
tuples from the inner child. The content of the outer buffer constitutes the in-memory
heap state of the NLJ. Figure 2 shows how the amount of heap state changes with time
for the two NLJs. The child NLJ first fills up its outer buffer, then its total state plateaus
while it reads its inner child and produces R ./ S tuples to fill the parent NLJ’s outer
buffer. When the parent NLJ’s outer buffer is full, this operator reads from its inner
child and produces R ./ S ./ T tuples. When the inner child has exhausted its output,
the NLJ discards its state and begins rebuilding its outer buffer with the next batch of
child tuples.

Example 2 (Need for asynchronous checkpointing). Suppose we need to suspend
the plan in Figure 1, at the time t2 depicted in Figure 2. Note that the state of the
plan is maximum at this stage, so dumping this state can incur significant overhead

3

NLJ0
X

XX
�

��

NLJ1
aa!!

ScanR ScanS

ScanT

NLJ0

NLJ1

Outer-input

buffers

Cursor

Checkpoint here

maps to very old

checkpoint of

child

Cursor

Figure 1: Execution plan and outer buffers.

during suspend and resume. If we use checkpointing instead, then we would prefer to
checkpoint an NLJ when its state is minimum, namely, when its outer buffer is empty.
These are indicated as minimal-heap-state points for each NLJ in Figure 2. However,
notice that the minimal-heap-state points of two operators usually do not coincide.

In contrast to synchronous checkpointing, which checkpoints the entire query at a
single point in time, asynchronous checkpointing poses an interesting challenge: Can
we let operators make their own checkpointing decisions, but coordinate independent
checkpoints to guarantee that the entire data flow can be resumed to a single consistent
state?

Next, consider what happens when a suspend request is received. An operator can
choose between dumping its state or going back to a previous checkpoint, with the
tradeoff discussed earlier. The optimal suspend plan, which specifies for each operator
whether it should dump or go back, depends on many things—e.g., how soon the sus-
pend must complete, how large is the current state, how much work would be involved
in reconstructing it, dependencies among operator states, etc. We argue that different
strategies may be appropriate for different operators, and the best suspend plan depends
dynamically on the runtime conditions at the suspend time. We illustrate this point with
a simple example below.

Example 3 (Need for suspend-time optimization). Suppose NLJ1 in Figure 1 pro-
duces joining tuples very infrequently, i.e., its join selectivity is low. On a suspend
request, therefore, it may be better for NLJ0 to write its state to disk, rather than to
discard these tuples and have NLJ1 recompute them during resume. Meanwhile, for
the same suspend request, it may be better for NLJ1 to go back to its most recent
checkpoint even if its outer buffer is full: Reconstructing NLJ1’s state during resume is
relatively inexpensive (just scan R); however, dumping this state to disk is expensive,
and it would still have to be read back in during resume.

We make the following contributions:
• Query suspend/resume. We propose a novel DBMS query lifecycle (Section 2) for

supporting query suspend/resume. This lifecycle augments the traditional query ex-
ecution with two new phases—suspend and resume—that are triggered on demand.

4

ScanT

ScanR

Time

NLJ0
state

NLJ1
state

ScanS

Minimal

heap state

t1 t2 t3 t4 t5

Figure 2: Heap state vs. time, for the two NLJ operators.

(We target scenarios where the DBMS can act on suspend requests as opposed to
immediate system failures; nevertheless, we believe some of our techniques can be
applied to failure handling.)

• Semantics-driven asynchronous checkpointing. We design strategies (Sections 3
and 4) for individual plan operators to decide independently when and how to
checkpoint in-memory state. We propose a novel contract mechanism to coordi-
nate independent checkpoints in a query plan, and to guarantee that the entire plan
can resume to a single consistent state. Our checkpointing techniques incur negli-
gible overhead during execution and allow fast suspend.

• Online selection of suspend/resume strategies. We address (Section 5) the prob-
lem of choosing the best suspend/resume strategy at suspend time to minimize total
suspend/resume overhead given a maximum allowed time to suspend. We solve this
optimization problem using mixed-integer programming, show how to implement
it efficiently and dynamically, and demonstrate how a hybrid strategy—where some
operators dump state and others go back—can often be better than a purist approach
where the entire query either dumps state or goes back.

• Planning ahead for suspend/resume. We show (Section 7) how suspend/resume
requirements could influence a query optimizer’s choice of execution plan, moti-
vating the use of information about expected suspend requests to select “suspend-
friendly” plans that are more efficient overall when suspend and resume costs are
included.

• Implementation. We show how our techniques can be implemented in a DBMS
with iterator-based query execution. We have implemented our techniques in the
PREDATOR [18] open-source DBMS, and we report experimental results (Sec-
tion 6) illustrating the benefits of our techniques.

2 Preliminaries and Problem Setup
Iterator-Based Query Execution Query execution plans in most DBMSs consist
of a tree of physical operators where each operator implements an iterator interface

5

Figure 3: Execute/suspend/resume phases of a query.

supporting three methods [5, 8]: Open() opens the iterator interface, Close() closes
the interface, and GetNext() retrieves the next output tuple from the operator. Query
execution proceeds in a recursive pull-based fashion where each operator gets its input
tuples by calling the GetNext() methods of its children in the operator tree.

Operators in an iterator-based plan use different types of state during execution.
We broadly categorize them as follows.
• In-memory state: state retained by an operator in main memory during execution.

This state may consists of:
– Heap state: Many operators use in-memory data structures that can be as large

as possible. For example, NLJ maintains a large outer buffer for tuples from
its outer child. We call such state heap state because memory for it is usually
allocated separately from the heap. Operators with heap state are called stateful
operators, e.g., NLJ, sort-merge join, and hybrid hash join [5].

– Control state: Control state refers to a small amount of state maintained by an
operator to keep track of its execution. For example, NLJ’s control state con-
sists of a tuple from its inner child and a cursor over the outer buffer (indicating
the current join position). As another example, the control state of a two-phase
merge-sort operator consists of locations of the sorted sublists on disk, and cur-
sors over these sublists (if the operator is in the merging phase).

• Disk-resident state: state retained by an operator on disk, e.g., the sorted sublists
produced by a two-phase merge-sort operator.

New Query Lifecycle To support suspend/resume, we augment the standard execute
phase of a query in a DBMS with two new phases—suspend and resume—as illustrated
in Figure 3. The problem we address is how to support this novel query lifecycle
efficiently. Once the query optimizer chooses an execution plan for a query Q, Q
enters its execute phase where the plan is instantiated and the iterator-based operators
begin executing.

As motivated in Section 1, Q may need to be suspended during execution for a
variety of reasons. Upon receiving a suspend request, Q enters the suspend phase; see
Figure 3. The goal of this phase is to produce a SuspendedQuery data structure that

6

encapsulates all the information needed to resume Q later (i.e., to be able to regenerate
Q’s execution state at the suspend point). This structure can be written to disk (e.g.,
if Q will be resumed in the same DBMS) or transferred elsewhere (e.g., if Q will be
migrated to a replica DBMS). A suspend cost is incurred during Q’s suspend phase.
After suspend, all of Q’s memory resources can be released.

As we saw in Example 3, there are different strategies to suspend each operator
in a query plan. At suspend time, the DBMS chooses a suspend plan for Q, which
describes the strategy that will be used to suspend each operator. The SuspendedQuery

structure records both execution and suspend plans for Q. In addition, the suspend plan
determines how the rest of SuspendedQuery structure will be populated. For example,
a simple suspend plan may specify that all NLJs in the query plan write their entire
in-memory state to disk, and record this disk location in SuspendedQuery. Selecting
an appropriate suspend plan is a nontrivial problem.

Q enters its resume phase when the DBMS is ready to resume it. As illustrated
in Figure 3, the goal of this phase is to reconstruct Q’s execution state back to the
suspend point, so that the execute phase can continue where it was interrupted. The
resume phase starts by reading Q’s SuspendedQuery structure. Actions during resume
are dictated by the suspend plan used during suspend. For example, if the in-memory
state of NLJs was written to disk, then during resume we need to read the state back
into memory. A resume cost is incurred when Q is resumed.

Questions to Answer In this work, we address how to support the novel execute-
suspend-resume query lifecycle in a DBMS. Specifically, we tackle the following ques-
tions: (1) What is the space of suspend plans for a query? (2) What do we need during
execute and resume phases to support such plans? (3) Given a maximum allowed
suspend cost, how do we pick the suspend plan that minimizes the total suspend and
resume cost? (4) Does it make sense to plan ahead for suspend/resume in query opti-
mization?

Assumptions We make some assumptions: (1) The resumed query uses the same
plan and operator-memory allocations as the suspended one (i.e., we ignore the pos-
sibility of re-optimizing the query on resume). (2) Both the suspended and resumed
query plans see the same physical database state, including the order of tuples al-
ready processed. (3) A query plan is executed as a single thread of computation in
an iterator-based fashion (e.g., no exchange operators [7]). In Section 3.4, we discuss
the implications of lifting some of these assumptions.

A Strawman Solution A strawman suspend plan, which we call all-DumpState, is
one where each and every operator in a query to be suspended follows a DumpState

strategy. With the DumpState strategy, each operator writes out all its heap state to
disk, then adds its control state and the location of the dumped state to Suspended-

Query. If we use all-DumpState in our running example, then each NLJ will dump its
outer buffer to disk, and add to SuspendedQuery the location of the dump, the current
position of the outer buffer cursor, and the current inner tuple. The table scan opera-
tors would record the current positions of their cursors in SuspendedQuery. Finally,

7

SuspendedQuery will be written out to disk.
During resume, using the information from the SuspendedQuery structure written

during suspend, the DBMS simply restores the entire in-memory execution state of the
query from the disk.

Since all-DumpState is designed along the lines of an OS-style process swap, it is
relatively easy to implement. All-DumpState does all its work during the suspend and
resume phases, so it adds no overhead during the execute phase.

3 Our Approach
Overview The all-DumpState solution requires every operator to write out its entire
in-memory state at the time of suspend, which can take a lot of time to complete and
thus delay the release of resources. When there is a need to suspend or migrate a query,
the DBMS may have stringent constraints on how quickly it must be done. Therefore,
in addition to being inefficient, all-DumpState may be infeasible in certain situations.

As motivated in Section 1, we can periodically checkpoint the execution of a query
Q. With periodic checkpointing, suspending Q simply involves writing to disk Q’s
control state at the suspend point; thus, it can be very fast. When resuming Q, we
can start from the last successful checkpoint, roll forward to the suspend point, then
continue regular execution.

However, periodically taking synchronous checkpoints of the entire execution state
of Q adds significant overhead to execution. As we saw in Example 2, operators may
be in different stages of execution with very different amounts of heap state. Creating
a synchronous checkpoint of Q requires writing a snapshot of Q’s entire in-memory
state, which can be expensive if Q uses stateful operators like NLJ, sort-merge join,
and hybrid hash join, which may hold a large amount of in-memory state in modern
systems.

In this section, we describe our comprehensive approach to supporting efficient
suspend/resume, consisting of a suite of ideas for all three phases of the query lifecycle:
• In the execute phase, we propose asynchronous checkpointing, where each operator

checkpoints independently of others in the query plan. We checkpoint stateful op-
erators proactively, but only at their minimal-heap-state points where the heap state
is as small as it gets during execution.
With these techniques, checkpointing becomes a low-overhead operation; in fact,
the amount of state to be remembered is so small that is can be retained in memory
and written out quickly at suspend time. Hence, this approach incurs no extra I/Os
at all during the execute phase.

• In the suspend phase, thanks to checkpointing, we now have a new suspend strategy
as an alternative to DumpState. With this new alternative, called GoBack, an oper-
ator writes only its current control state to SuspendedQuery at the time of suspend,
incurring much lower suspend cost than DumpState.

• In the resume phase, we now need to handle operators differently depending on the
strategies chosen by the suspend plan. Heap state handled by DumpState simply
needs to be read back; however, heap state handled by GoBack needs to be recon-

8

Term Meaning
SuspendedQuery Data structure holding information for resume.

Populated and written to disk at suspend, read
during resume.

Minimal-heap-state point Point during execution of operator when it has
minimal associated heap state.

Checkpoint Entire in-memory state of an operator at a par-
ticular point in time.

Proactive Checkpoint created proactively by a stateful
checkpoint operator at a minimal-heap-state point.
Reactive Checkpoint created by a stateless operator in
checkpoint response to specific situations, e.g., a suspend.
Contract Agreement between a parent and a child oper-

ator, to ensure that child can regenerate tuples
from a particular point of time.

Contract graph Directed acyclic graph data structure in mem-
ory, to track active checkpoints and contracts.

DumpState Strategy where an operator writes out all state
to disk, and reads it back during resume.

GoBack Strategy where an operator goes back to some
previous checkpoint, and depends on child op-
erators to rebuild heap state during resume.

Suspend plan Specification of DumpState or GoBack for op-
erators in a query plan.

Checkpoint() Method to create a checkpoint.
SignContract(c) API extension to establish a contract between

an operator and its child; c is the parent’s check-
point.

Suspend() API extension to tell an operator to suspend to
the current point in time.

Suspend(k) API extension to tell an operator to suspend to
a previously established contract k.

Resume() API extension to tell an operator to resume ex-
ecution after suspend.

Table 1: Summary of terms and methods.

9

structed by rolling forward from the last checkpoint, which might result in a higher
resume cost than DumpState.

• We consider the tradeoff between DumpState and GoBack in choosing a suspend
plan during suspend. We use mixed-integer programming to find the best suspend
plan that minimizes the total overhead of suspend/resume while meeting a given
suspend-cost constraint.
The remainder of this section presents the details of our approach. We defer the

discussion of suspend plan optimization to Section 5. For readability, Table 1 summa-
rizes the important concepts. Before delving into the details, we wish to make a few
observations that we think are interesting and illustrative of the intricacies involved in
implementing suspend/resume:
• Checkpointing each operator separately is insufficient; without cooperation from a

child operator to produce the next input tuples, a checkpoint is useless (cf. contracts
in Section 3.1).

• Simply remembering the latest checkpoint taken is insufficient; a parent operator
may want to go back to its minimal-heap-state point, earlier than the latest check-
point of the child (cf. active checkpoints in Section 3.4).

• The above observation does not imply that all checkpoints need to be remembered;
in fact, each operator only needs to remember O(n) checkpoints, where n is the
number of operators in the query plan (cf. Theorem 1).

• Rolling forward from a checkpoint does not mean we redo all the work in between;
some computation can be in fact skipped (cf. Section 3.3).

3.1 Execute Phase
Checkpoints Apart from regular processing in the execute phase, operators create
checkpoints in anticipation of suspend requests.

Definition 1 (Checkpoint). A checkpoint for an operator O at time t contains all the
information necessary1 to later restore O’s execution state as of time t.

The checkpointing operation for an operator O consists of creating a checkpoint
Ckpt and either storing Ckpt in memory or writing it to disk. If Ckpt is stored in
memory, then it may need to be written to disk in the suspend phase. Once Ckpt is
written to disk, O can use Ckpt in the resume phase to reconstruct its exact state as of
the time Ckpt was created.

We do not always know in advance when or whether a suspend request will arrive.
Therefore, it is desirable to keep the overhead low for checkpointing during normal
execution, particularly for stateful operators like NLJ, sort-merge join, hybrid hash
join, etc. Our solution is to have each stateful operator O in a plan create checkpoints

1In the DBMS query suspend/resume setting, for all the operators we considered, it suffices for the
checkpoint to record O’s in-memory (heap and control) state. There is no need to copy the disk-resident
state at t, because a chunk of such state is usually written once and never modified (e.g., the sorted sublists
of a merge-sort operator). The control state records the current locations and sizes for chunks of the disk-
resident state; this information goes into the checkpoint, and allows us to restore access to the disk-resident
state at the time of the checkpoint. We make this assumption in the rest of Section 3.1.

10

proactively at points during execution when O’s heap state is minimal, namely, at O’s
minimal-heap-state points. For instance, an NLJ operator will perform a checkpoint
each time its outer buffer is empty; NLJ has zero heap state at this point. Minimal-
heap-state points are very attractive because:
• Very little bookkeeping is required to create checkpoints at these points: By defini-

tion, the heap state is minimal (often zero), while the control state is always small
(often implicit at minimal-heap-state points and hence may not need to be explicitly
remembered).

• Since the checkpoints are small, and most old checkpoints can be deleted over time
(as we will show in Section 3.4), all checkpoints required for a plan can be retained
in memory until suspend. Hence, checkpointing incurs no I/Os during execution.
Stateful operators checkpoint their state at every minimal-heap-state point. We re-

fer to this form of checkpointing as proactive checkpointing. On the other hand, state-
less operators like filters are always at a minimal-heap-state point. Hence, stateless op-
erators perform reactive checkpointing, where checkpointing is done only on demand,
e.g., on a suspend request. Overall, checkpointing is asynchronous across operators
because each schedules its checkpoints independently according to its semantics.

Contracts It turns out that checkpoints alone are not enough to support suspend/resume
because of asynchronous checkpointing. A checkpoint Ckpt for an operator O can only
restore O’s execution state alone. However, to be able to make progress after resume,
O still needs its children in the plan to resume producing input tuples for O immedi-
ately after the point where Ckpt was created. To address this problem, after creating a
checkpoint, O will establish a contract with each of its children.

Definition 2 (Contract). A contract is an agreement between a parent operator P
and a child operator Q. Let r1, . . . , rn be the first-to-last sequence of tuples output
by Q to P if they run to completion without being suspended. When a contract Ctr is
established between P and Q just before tuple ri is output by Q, Q agrees to be able
to regenerate, at any later point in time when Ctr is enforced by P , tuples ri, . . . , rn

in order.

Next, we discuss what a child operator Q needs to do in order to fulfill a contract
Ctr with its parent operator P . We discuss two cases; operational details will be pro-
vided momentarily:
• If Q is a stateful operator, then Q saves its current control state when it signs Ctr .

(Recall that control state is small and includes, for example, the cursor position for
a NLJ.) This control state, along with Q’s latest checkpoint (and the contracts with
Q’s children that Q established at that time), are sufficient for Q to fulfill Ctr .

• If Q is a stateless operator, in order to sign Ctr , Q creates a reactive checkpoint and
in turn establishes a contract with its children. These two items are sufficient for Q
to fulfill Ctr .

To recap, whenever the parent operator creates a checkpoint at time t, it has to estab-
lish contracts with its children at t. Thus, an operator’s contract is always associated
with a parent operator’s checkpoint. Furthermore, to fulfill a contract signed at t, a

11

child operator relies on the last checkpoint of its own created before or at t—either a
proactive checkpoint for a stateful child or a reactive checkpoint for a stateless child.
Conceptually, the child first restores its execution state to this checkpoint, rolls forward
to t, and starts producing output tuples for its parent in fulfillment of the contract.

Contract Graph To keep track of the dependencies among checkpoints and con-
tracts, we maintain for each query a runtime in-memory data structure called contract
graph. A contract graph G is a directed acyclic graph with checkpoints as nodes and
contracts as edges. Suppose that a parent P creates a checkpoint Ckpt 1 and at the same
time establishes a contract Ctr with its child Q, while Q signs Ctr and determines that
it would rely on its own checkpoint Ckpt2 to fulfill Ctr . At this point, we would record
in G a directed edge Ctr from Ckpt 1 to Ckpt2.

Checkpoints and contracts become unnecessary over time and may be deleted from
the contract graph. We discuss in Section 3.4 how to maintain the contract graph and
show that its size is bounded by O(nh) for a plan of n operators with height h.

Operational Details To implement checkpointing and contracting, each operator
supplies two methods. Checkpoint() creates a checkpoint; this method is internal to
the operator. SignContract(Ckpt) establishes a contract for the parent’s checkpoint
Ckpt ; this method is one of the extensions we propose to the iterator interface.

A stateful operator P calls Checkpoint() at every minimal-heap-state point, which
creates a checkpoint Ckpt 1 and adds it to the contract graph. Checkpoint() then calls
SignContract(Ckpt1) on each of P ’s children. When a child operator Q receives this
call, Q creates a new contract Ctr , which stores any control state necessary to be able
to resume execution from this point. Then, Q determines its own checkpoint Ckpt 2 to
use for fulfilling Ctr : If Q is stateful, Ckpt 2 is Q’s checkpoint at its last minimal-heap-
state point; if Q is stateless, Ckpt 2 will be created reactively by calling Checkpoint().
Finally, Ctr is added as an edge to the contract graph.

In general, SignContract() calls are recursively propagated down through all state-
less children, until some stateful children stop the recursion with their proactive check-
points.

Example 4 (Checkpointing and contracting in action). Figure 4 shows the two NLJs
from our running example. The marked times t1, . . . , t5 correspond to the times shown
in Figure 2. NLJ0 creates a checkpoint node Ckpt1 at its minimal-heap-state point
t3 and invokes SignContract(Ckpt1) on NLJ1. NLJ1 responds by creating a contract
Ctr1 which stores the current control state of NLJ1. Ctr1 is mapped as the edge
between nodes Ckpt1 and Ckpt2, where Ckpt2 is NLJ1’s proactive checkpoint at its
last minimal-heap-state point t1. Ckpt1, Ckpt2, and Ctr1 form the corresponding
contract graph. We also show NLJ1’s SignContract() calls. Figure 5 shows a more
complex contract graph for four stateful operators evolving over time, and is explained
in Section 3.4.

12

Ckpt3

�

Minimal-heap-state

point

Ctr2

Ckpt2

Checkpoint

Ckpt1

Contract Ctr1

�

Suspend()

SignContract(Ckpt2)

Suspend(Ctr3)

NLJ0

NLJ1

Resume()

Resume()

Suspend

point

Resume

point

Time

SignContract(Ckpt1)

�

�

Ctr3

SignContract(Ckpt3)

Suspend() Resume()

t1 t3 t4 t5t2

Figure 4: Sequence of calls for two operators.

3.2 Suspend Phase
Choosing a Suspend Plan When the DBMS wants to suspend a query Q, it raises
a suspend exception in the thread that runs Q. The exception is handled at Q’s next
blocking step (e.g., I/O) and Q enters the suspend phase where its first task is to choose
a suspend plan. A suspend plan specifies one of two possible actions—DumpState or
GoBack—for each operator. Identifying the space of valid plans and choosing the best
one are nontrivial problems that we address in Section 5. For now, we will assume that
a valid suspend plan has been chosen.

Carrying Out a Suspend Plan Given the suspend plan, the suspend exception han-
dler initializes the SuspendedQuery data structure with the execution and suspend
plans for the query Q to be suspended. Then, the handler invokes a method called
Suspend() on the root query operator, which will further populate SuspendedQuery

with additional information necessary for later resume.
On receiving the Suspend() request, the root query operator Or looks up the sus-

pend plan for the action specified for it:
• If the action is DumpState, then Or writes its heap state to disk, and records its disk

location in SuspendedQuery. In addition, Or adds its current control state—needed
to resume from exactly the suspend point—to SuspendedQuery. Finally, Or calls
Suspend() on each of its children so that the next GetNext() call (on resume) will
retrieve the tuple following the last one received by Or.

13

• If the action is GoBack,2 Or finds Ckpt , its latest checkpoint; then, Or adds both
the content of Ckpt and its current control state to SuspendedQuery. Instead of
calling Suspend() on a child Oc, Or calls Suspend(Ctr), which basically instructs
Oc to suspend to an earlier point. Here, Ctr is the contract that Or established with
Oc when creating Ckpt . Effectively, in this case, Or discards its heap state and
depends on its children to reconstruct its state at resumption.
The Suspend() call on the root query operator eventually causes a Suspend() or

Suspend(Ctr) call on each non-root operator P in the query plan. P processes a Sus-

pend() call in exactly the same fashion as the root operator. When Suspend(Ctr) is
called on P , it looks up the suspend plan to determine its action:
• In case of DumpState, P writes its heap state to disk, and records its disk location in

SuspendedQuery. In addition, P adds the content of Ctr (the control state recorded
earlier when signing Ctr) to SuspendedQuery. This information will allow P to
resume execution from the point when contract Ctr was signed. Finally, P calls
Suspend() on its children.

• In case of GoBack, P first adds the content of Ctr to SuspendedQuery. Let Ckpt

be the checkpoint of P pointed to by the edge for contract Ctr in the contract graph.
For each child Q, P calls Suspend(CtrQ) on Q where CtrQ is the contract between
P and Q established at P ’s Ckpt . Effectively, P instructs all of it children to resume
(later in the resume phase) to Ckpt ; from that point, the subplan rooted at P can
together roll forward to the time of Ctr .
Finally, after all Suspend() or Suspend(Ctr) calls have been made on all operators

in the query plan, the suspend exception handler writes out SuspendedQuery to disk
and stops Q, discarding all its in-memory state and completing its suspend phase.

Example 5 (Suspend in action). Suppose suspension occurs at time t5 in Figure 2.
At this point, the NLJ outer buffers are as shown in Figure 1. The corresponding
suspend point is also indicated in Figure 4. Assume that the suspend plan selected is
one where NLJ0 does DumpState and NLJ1 does GoBack. First, Suspend() is called
on the root operator NLJ0. Since NLJ0 chooses DumpState, it writes the few tuples
in its outer buffer to disk, then records the disk location of this state as well as its
current control state in SuspendedQuery. It then calls Suspend() on its child operators
as seen in Figure 4. NLJ1 chooses GoBack, so it just adds its current control state to
SuspendedQuery (NLJ checkpoints at minimal-heap-state points happen to contain no
information). Finally, NLJ1 invokes the previous contract established at time t4 with its
child operator by calling Suspend(Ctr3) on ScanR. ScanR adds the content of Ctr 3

(which contains its control state at t4) to SuspendedQuery so that it can regenerate all
its output tuples starting from t4.

Example 6 (An alternative suspend plan). Assume that we choose a different sus-
pend plan in which both NLJ0 and NLJ1 choose GoBack. When Suspend() is called
on NLJ0, it adds its the current control state to SuspendedQuery (Ckpt 1 contains no
information) and calls Suspend(Ctr1) on NLJ1 as the contract Ctr1 can be used to

2We only consider a stateful operator in this case, because DumpState would work better for a stateless
operator.

14

regenerate NLJ0’s heap state. Since NLJ1 also chooses GoBack, it adds its control
state as of time t3 (content of Ctr1) to SuspendedQuery (again, Ckpt2 contains no
information). Finally, NLJ1 invokes the previous contract established at time t1 with
its child operator, by calling Suspend(Ctr2) on ScanR. ScanR adds its control state at
t1 (in Ctr2) to SuspendedQuery so that it can regenerate all its output tuples starting
from t1.

3.3 Resume Phase
We now discuss steps required when resuming a suspended query. First, the Suspend-

edQuery data structure is read back from disk. The query plan is recreated by instantiat-
ing all operators, and the Resume() method is invoked on the root operator. Eventually,
Resume() gets called on all operators, causing the plan to get ready to produce the tu-
ple immediately after the last one produced before suspend. When the root operator
receives the call, it first calls Resume() on its children to get them into the correct state.
It then looks up the SuspendedQuery structure and either loads its internal state from
disk (in case of DumpState) or calls GetNext() appropriately on its children (in case
of GoBack) to recompute its internal state. In the latter case, each child will produce
the correct tuples because we previously invoked its Resume() method.

Example 7 (Resume in action). In our running example (cf. Figure 4), Resume() is
called recursively on all operators. Assume that at suspend time, the online optimizer
chose the suspend plan described in Example 5. (1) ScanR reads in the control state
and gets into a position where the next tuple generated would be the one immediately
after checkpoint Ckpt3. (2) NLJ1 reads from SuspendedQuery the control state for
t5, which is the “target state” that NLJ1 should roll forward to. Then, NLJ1 starts
with an empty outer buffer and calls GetNext() on ScanR to refill the buffer. (3) NLJ0

directly reads its heap and control state from SuspendedQuery. These actions put the
query plan in a position capable of producing tuples starting precisely from the suspend
point, as desired.

Skipping versus Redoing During the resume phase, it is important to point out that
an operator using GoBack strategy to a checkpoint Ckpt does not recompute all its
output tuples from Ckpt to the suspend point. In fact, it only needs to redo the work
of generating its output tuples from Ctr on, where Ctr is the contract used (if any) in
the Suspend(Ctr) call to the operator. Output tuples from Ckpt to Suspend(Ctr) are
skipped instead. If there is no such Ctr (i.e., the operator received Suspend() directly),
then all output tuples to the suspend point can be skipped.

Skipping can be done efficiently knowing the operator’s “target state” at either the
suspend or contract point, which is available from the SuspendedQuery structure. We
illustrate this point using an NLJ operator that was suspended in the middle of joining
an inner tuple with tuples in its outer buffer. Suppose that the suspend plan chooses
GoBack for this NLJ. On resume, the NLJ refills its outer buffer from its outer child.
Then, the NLJ directly restores the target state: the inner tuple and the position of the
outer buffer cursor. The next output tuple to be generated will be precisely the one after

15

P0

P1

P2

P3

Time
Checkpoint
Contract

Figure 5: Contract graphs over time.

the suspend point. There is no need to recompute (and discard), for example, the join
between the inner tuple and the outer tuples before the target cursor position.

Suspend During or After Resume If a new suspend request comes during resume,
we can simply discard everything and keep the old SuspendedQuery data structure;
the next resume will restart using the same data. If a suspend request comes after
the resume phase completes, we have two choices. If we save the contract graph to
disk on each suspend, then we will have full flexibility in performing another suspend
soon after resume. This option is feasible since contract graphs are typically small (see
Section 3.4). If we do not store the contract graph, part of the contract graph (a subtree)
is still available in the SuspendedQuery data structure. With a partial graph, we will not
have as many options for suspend plans as we could; however, as the query execution
continues, the contract graph will be gradually reformed to enable more options.

3.4 Discussion
Contract Graph Maintenance Operators create checkpoints and contracts during
their execution. As time progresses, older checkpoints and contracts become useless
because we no longer need them during suspension, so they can be deleted. Formally,
an inactive checkpoint is one to which no operator will go back during suspension, and
an inactive contract is one which will never be enforced during suspension. Inactive
contracts and checkpoints can be deleted from the contract graph. When an operator
creates a new checkpoint, it checks if any of its previous checkpoints can be deleted.
A checkpoint node in the contract graph can be deleted if it has no incoming edges
and it is not the most recent checkpoint of some operator. If a checkpoint node can
be deleted, it is removed along with its outgoing edges (contracts). The child nodes of
deleted checkpoints are recursively checked to see if they can in turn be deleted.

Example 8 (Contract graph maintenance). Consider a left-deep query plan consist-
ing of four NLJ operators named P0, P1, P2, and P3 starting from the root. The leaf
operators are table scans. A possible evolution of contract graphs with time is shown
in Figure 5 (we only show the NLJ operators for clarity). Initially, all four operators

16

create checkpoints at the same time (just before execution starts), giving the first con-
tract graph. P2 is the first to reach its next minimal-heap-state point, and it results in
a new checkpoint node and contract edge as shown in the second frame. Next, P1 cre-
ates a new checkpoint node. The next minimal-heap-state point again belongs to P1,
and at this time the earlier checkpoint node and contract edge can be deleted (shown
shaded in the figure). Next comes P2’s checkpoint and finally, when P0 creates a new
checkpoint, an earlier set of checkpoints and contracts can be deleted.

The theorem below follows directly from the definitions of inactive checkpoints
and contracts:

Theorem 1. For a query plan consisting of n operators where h is the tree height of
the plan, the maximum number of checkpoints and contracts in an actively maintained
contract graph is O(nh) (or O(n2) in the worst case).

Proof. (Sketch) Consider an operator P . An active checkpoint of P must be either the
last one for P , or reachable via contract edges from an ancestor checkpoint that is the
last one for its corresponding operator. There are at most h such ancestor checkpoints,
each of which has only one descendant checkpoint for P . Thus, the number of active
checkpoints for each operator is no more than h. The number of active contracts are on
the same order as the number of active checkpoints.

Recall that we only create checkpoints at minimal-heap-state points, or reactively
for stateless operators, the space required for each checkpoint is small. Contracts only
record control state, which is also very small. Since the number of operators in a query
plan is usually not huge, the overall space taken by the entire contract graph is typically
no more than a few kilobytes in size.

Contract Migration This technique reduces resume cost by migrating contracts signed
by an operator to later points during execution. We describe two scenarios where mi-
gration is useful. (1) Consider a stateful operator P such as an NLJ. If a contract has
been established between P ’s parent and P at some point, and P reaches the next
minimal-heap-state point without generating any tuples (maybe because the join pro-
duced no matches), the older contract can be safely migrated to the new checkpoint of
P . (2) Similarly, a very selective filter operator can avoid re-performing the work of
reading non-matching tuples from its child after signing a contract with its parent. This
optimization can be achieved by creating a new reactive checkpoint after obtaining the
first matching tuple, and migrating the old contract to this checkpoint.3

Generalizing Suspend Plan Consider an operator such as merge join, whose heap
state is derived from two or more children. It may be optimal for this operator to
choose different strategies with respect to each child. Based on this intuition, we can
extend the definition of a suspend plan as follows. A suspend plan specifies, for each
operator, the strategy to be used with respect to each of its children. For example, a

3One technicality is that, since the matching tuple has already been returned by the filter’s child, it might
be too late to ask the child to reproduce that tuple. The filter would therefore save this single tuple as part of
the migrated contract. On resume, the saved tuple would be the first one returned by the filter.

17

merge join operator may decide to choose GoBack w.r.t. its left child and DumpState

w.r.t. its right child. Extending our earlier discussion to support general suspend plans
is straightforward, and is therefore not covered in this report.

Resuming with a Different Plan Resuming with a different plan is tricky because
we exploit physical properties of operators for efficiency. For instance, changing buffer
size could change intermediate result ordering, and could mess up the resumption of
ancestors. We can (with modifications) handle changes to operator-memory allocations
on query resumption; details are omitted.

Resuming with a very different plan is attractive as that would make our approach
useful for query re-optimization. However, this is not our intended application (Sec-
tion 8 has more details).

To provide resume flexibility, one extreme would be a purely logical approach
where we semantically describe the partial work completed at suspend time, e.g., “all
sales in North America have been aggregated.” The remaining work can be cast as a
distinct, independently-optimized query as in [12]. However, it is difficult to capture
the partial work done at arbitrary points in time, so the opportunity for applying the
logical approach is severely limited. A logical approach cannot exploit the knowledge
of the internals of query plans and operators like our approach.

Thus, there is an inherent trade-off between the flexibility in resume and applicabil-
ity/efficiency. Instead of being limited to a single solution, the DBMS can incorporate
multiple approaches that are used for different scenarios.

Assumption on Same Database State Our assumption that the suspended and re-
sumed query plans see the same database state (Section 2) does not imply a read-only
database, because we only need to block writes to those portions of the database that
were read by an unfinished query. When the query completes and releases its locks,
writes to these portions can proceed. This behavior is no different from a standard
DBMS running serializable transactions. Suspend/resume does not introduce new re-
strictions. Techniques that benefit a standard DBMS, such as predicate locking, also
benefit suspend/resume. Finally, if a high-priority update conflicts with a suspended
query, we can always terminate (and later restart) the suspended query.

4 Implementation for Other Operators
So far, we have used mostly block-based NLJ as an example in discussion. We now
discuss some of the other common operators.

Table Scan and Index Scan Table and index scans are the base operators upon which
query plans are built. Table scans operate over disk pages, returning the next tuple from
the retrieved disk page in response to GetNext(). Index scans are similar, except that
they operate over an index structure.
• Contracting: Being a leaf operator, table scan performs only reactive checkpoint-

ing. When it receives a SignContract(Ckpt) request from its parent, it creates a

18

contract which stores the current control state (i.e., the current disk page location
and position within that disk page) in order to satisfy that contract.

• Suspend: On Suspend(), table scan writes its control state to the SuspendedQuery

data structure. On a Suspend(Ctr) call, table scan retrieves the control state from
Ctr and writes it to SuspendedQuery.

• Resume: Resume() determines the location of the disk page to be retrieved, from
SuspendedQuery. It reads in the disk page to memory and positions the cursor at
the right location.

Filter The filter operator works by consuming tuples from its child and producing a
subset of tuples that pass the filter condition.
• Contracting: As a stateless operator, filter performs only reactive checkpointing.

When it receives a SignContract(Ckpt) request from its parent, it creates an empty
contract to satisfy the request and then establishes a contract with its own child.
Filter can use contract migration (see Section 3.4) to avoid re-performing some
extra work at resumption.

• Suspend: Filter is stateless, so it responds to Suspend() by calling Suspend() on its
child, and to Suspend(Ctr) by calling Suspend(Ctr ′) on its child, where Ctr ′ is the
corresponding contract between the filter operator and its child.

• Resume: Filter simply calls Resume() on its child. In case of contract migration, it
reads one tuple from SuspendedQuery.

Merge Join Merge join takes two sorted inputs and produces the join output. Merge
join calls GetNext() on each child to form batches of tuples with equal join attributes
(called value packets [8]). Although value packets simplify join logic, they introduce
state that we need to consider. The DumpState strategy requires writing out and read-
ing in both the current value packet (heap state), and the cursor positions within the
value packet (control state). Minimal-heap-state points occur when a value packet is
exhausted and proactive checkpointing can be performed at these points. On receiving
a SignContract(Ckpt) call, the operator needs to store its control state in the newly
created contract. Contracts would ensure regeneration of the current value packet. If
value packets are small, we could instead perform reactive checkpointing and store the
value packet as part of the contract with parent.

Two-Phase Merge Sort During its first phase, this operator successively reads tuples
into its sort buffer, sorts them with an in-memory sorting algorithm, and then writes the
sorted sublist back on disk. During the second phase, it buffers one block from each
sublist, and produces tuples by consuming the minimum first tuple, refilling blocks as
necessary. The sorted sublists that have been written to disk are disk-resident state; they
serve as an convenient materialization point [16], and can be retained across suspend
and resume (assuming plentiful disk space).

During the first phase, the sort operator performs proactive checkpointing before
reading each new sublist into the sort buffer. It receives a SignContract(Ckpt) only

19

once at the beginning of this phase because this phase does not produce tuples. Con-
tract migration is crucial and done at every proactive contract. On a Suspend() or
Suspend(Ctr) call, the DumpState strategy requires writing out the unsorted sublist
(which may have been partially read) from heap to disk and calling Suspend() on the
child. GoBack requires the operator to call Suspend(Ctr ′) where Ctr ′ is the contract
with child. During the second phase, sort behaves similarly to a table scan.

Tuple-based NLJ with an index on inner This is a popular version of join which
reads the outer table one tuple at a time. There is an index on the join attribute, for the
inner child which is a materialized table. After reading a tuple from the outer table, the
operator probes the index to find matching tuples in the inner, and outputs the results.
The operator state consists of just one tuple from the outer table. Hence, this operator
uses reactive checkpointing. On a Suspend() call, this operator simply calls Suspend()
on its outer child. The position of the index search and the currently buffered outer
table tuple is stored in SuspendedQuery to enable precise resume. On a Suspend(k)
call, this operator retrieves the control state from k to store in SuspendedQuery and
then calls Suspend(k′) on its child, where k′ corresponds to the appropriate reactive
checkpoint. The Resume() call simply reads the stored state.

Simple hash join Simple hash join operates in two phases. During the first phase,
the tuples from the outer and inner child operators are read and hashed into one of k
blocks in memory. When a block fills up, it is written to disk. The operator has a
minimal-heap-state point at the beginning before we start reading from a child oper-
ator. However, during the hashing process we do not have minimal-heap-state points
to leverage because different blocks may become empty at different times. Thus, this
operator creates one proactive checkpoint at the beginning of the hash phase for each
child. When it receives a SignContract(c) call, this operator creates a new Contract k,
and maps the contract to the initial checkpoint. As an optimization, the operator can
store the number of blocks already written to disk by each bucket, as part of k. This
allows the operator to avoid re-writing this data to disk during resume. On a Suspend()
call, this operator can either write the current buckets in memory to disk, and call Sus-

pend() on its children, or it can GoBack and use the proactive contract signed earlier.
Suspend(k) is handled using the GoBack strategy.

The end of phase one acts as a materialization point. During phase two, this opera-
tor reads an entire bucket of outer child into memory and then reads the corresponding
bucket of inner child one block at a time, performing the join. If this operator receives
a SignContract(c) call during the second phase, it stores the current bucket number
being processed, the position of cursor on the bucket of the outer table (recall that
the entire bucket of the outer table is loaded into memory), and the current disk page
and position within that page for the inner bucket (which is being read one block at
a time). A suspend request is handled by writing this bookkeeping information to the
SuspendedQuery data structure. Resume reads the current bucket for outer child, and
the current disk page for inner child, and finally sets the cursor positions appropriately.

20

Hybrid hash join This operator is similar to simple hash join, but some buckets of
the smaller relation are kept entirely in memory and hence we do not have the advantage
of a materialization point for that child. Suspend is relatively expensive for this operator
as it can either dump its entire state or go back to the beginning with respect to the
smaller relation. For the larger relation however, we can leverage the materialization
point as in the case of simple hash join.

Grouping with aggregation, duplicate elimination These operations are typically
implemented using the sort operator, or using hashing. Thus, we can handle them
using the techniques described for two-phase merge sort and simple hash join. In case
of grouping with aggregation, we maintain the current value of the aggregate and store
it as part of any requested contract. In case of duplicate elimination, we can maintain
the tuple whose duplicates are currently being eliminated. Thus, we can resume from
the exact point in case of a suspend. In case these operators use hashing, the first phase
is as before. In the second phase, an entire bucket is brought into memory to perform
the function of these operators. We again maintain the current aggregate value or the
duplicate elimination tuple while processing the current bucket.

5 Selecting Suspend Plans Online
In this section we address the problem of choosing the optimal suspend plan at sus-
pend time. Every operator needs to decide whether to choose the DumpState or the
GoBack strategy. Choosing GoBack often reduces, by orders of magnitude, the state
to be written to the disk at suspend time. The downside is a potentially longer resume,
because the discarded state needs to be recomputed by the subplan. Since high-priority
tasks may be waiting, we would like make suspend as fast as possible, at the expense
of a slower resume. However, within a specified suspend budget, we may still write out
state to disk if it results in a lower overall overhead.

Given a constrained suspend cost budget, we address the optimization problem that
determines, for a plan of n operators, the suspend strategy for each operator. The time
of suspend is the ideal time to perform this optimization, because we have all correct
statistics necessary, and we know the exact position of suspend and the position of each
operator with respect to its contracts and checkpoints. The optimization problem can
be formulated as a mixed-integer program.

Space of Valid Suspend Plans As a slight simplification, we assume that we make
suspend choices on a per-operator basis. In general (see Section 3.4), an operator could
choose different strategies for each of its children. The extension is straightforward.

It would then appear that there are 2n possible suspend plans, since each operator
can choose either DumpState or GoBack. However, there are restrictions on what
combinations are valid. If a parent chooses the GoBack strategy, it could imply that the
child also has to use GoBack, if the child has been requested to satisfy a contract that
it accepted before its last checkpoint. In this case, the operator would have discarded
the relevant state and hence it has to use GoBack and depend on its contract with its

21

child to regenerate that state. Such restrictions can be determined at runtime based on
the state of the operators at suspend time.

Mixed-Integer Programming Formulation We have n operators, p1 . . . pn forming
an operator tree. We define the set anc(i) as the set of ancestors of pi and pi itself. Let
par(i) denote the parent of pi in the tree. We define the following constants:
• ds

i ∀i: Operator-specific suspend cost for pi if pi chooses DumpState; mostly the
cost of writing pi’s current state to disk.

• dr
i ∀i: Operator-specific resume cost for pi if pi chooses DumpState; mostly the

cost of reading the dumped state.
• ci,j ∀i, j s.t. j ∈ anc(i): A constraint on whether pi can choose DumpState: ci,j

is 1 if pi’s most recent checkpoint is after the checkpoint of pi that is reachable (in
the contract graph) from the latest checkpoint of pj ; 0 otherwise.

• gs
i,j ∀i, j s.t. j ∈ anc(i): Operator-specific suspend cost for pi if pi chooses GoBack

to fulfill the contract originally initiated by pj ; usually negligible.
• gr

i,j ∀i, j s.t. j ∈ anc(i): Operator-specific resume cost for pi if pi chooses GoBack

to fulfill the contract originally initiated by pj . This cost is approximated by track-
ing the cumulative work that pi itself had done up to each of its active checkpoints.
gr

i,j is just the difference between the current cumulative work done by pi and the
cumulative work done by pi at its checkpoint reachable (in the contract graph) from
pj’s last checkpoint.

• C: The total suspend budget available.
The variables to be assigned are:
• xi,j ∀i, j s.t. j ∈ anc(i): For each operator pi, we define one zero-one variable for

each operator pj in the set anc(pi). xi,j = 1 if pi decides to go back to fulfill the
latest contract originally initiated by pj ; 0 otherwise. If all variables of a particular
operator are 0, the operator chooses to dump its state.

The linear program minimizes:
∑

i

(

ds
i

(

1 −
∑

j∈anc(i)xi,j

)

+
∑

j∈anc(i)g
s
i,jxi,j

)

+ (1)
∑

i

(

dr
i

(

1 −
∑

j∈anc(i)xi,j

)

+
∑

j∈anc(i)g
r
i,jxi,j

)

(2)

Subject to:
∑

j∈anc(i)xi,j ≤ 1 ∀i; (3)
xi,j ≤ xi′,j ∀i, i′, j s.t. i′ = par(i) and j ∈ anc(i′); (4)

xi,i ≤ 1 −
∑

j∈anc(i′)xi′,j ∀i, i′ s.t. i′ = par(i); (5)
xi,j ≥ xi′ ,j if ci,j ∀i, i′, j s.t. i′ = par(i) and j ∈ anc(i′); (6)
∑

i

(

ds
i

(

1 −
∑

j∈anc(i)xi,j

)

+
∑

j∈anc(i)g
s
i,jxi,j

)

≤ C; (7)

xi,j ∈ {0, 1} ∀i, j s.t. j ∈ anc(i). (8)

22

The objectives on Lines (1) and (2) compute the total suspend and resume costs
respectively. The constraint on Line (3) ensures that an operator can either choose
DumpState (sum would be 0) or it can go back to exactly one ancestor P (sum would
be 1). P is either the root or the closest ancestor whose parent chooses DumpState.
Lines (4) and (5) basically ensure that the strategies chosen by a parent and a child are
compatible. Line (6) ensures that if an operator P ’s parent chooses to GoBack to some
operator Q, then P has to GoBack to Q if DumpState is not viable. Line (7) checks
the suspend budget, while Line (8) specifies variable domains.

The total number of constraints is O(nh) (or O(n2) in the worst case), where h is
the height of the plan tree. The solution is used to decide the suspend strategy for each
operator.

No. of operators Optimize time
11 1.614 ms
21 5.846 ms
41 9.959 ms
61 20.599 ms
81 38.016 ms
101 59.060 ms

Table 2: Optimizer time; increasing plan size

We experiment with a series of left-deep NLJ plans with table scans at leaves. A
plan with k operators has (k−1)/2 NLJ operators in a chain. Such a chain is in fact the
worst case for number of variables/constraints in the mixed-integer program. Table 2
shows the optimizer time (reported in milliseconds) with increasing plan size. We see
that the optimizer is very efficient, producing suspend plans in less than 60ms for plans
with up to 100 operators.

6 Experiments
In order to evaluate query suspend and resume, we implemented our techniques in the
PREDATOR [18] database system. We extended the operator interface to include our
methods of SignContract(Ckpt), Suspend(), Suspend(Ctr), and Resume(). We imple-
mented checkpoints and contracts for the most common physical operators including
block-based NLJ, sort-merge join, two-phase merge sort, filter, and table scan.

We implemented the GoBack and DumpState strategies for each operator. We im-
plemented the online optimizer to choose the optimal strategy plan at suspension time,
by incorporating a mixed integer program solver into PREDATOR. The query proces-
sor maintains all the necessary statistics, and generates the linear program at the time
of suspend. The solution is used to generate the optimal suspend plan. We found that
even for large query plans, the solver has negligible runtime overhead. PREDATOR
uses SHORE [2] as the underlying storage manager. For uniformity, we also used
SHORE to write/read data and state. The experiments were run on an Intel Xeon 2.00
GHz machine running Linux kernel 2.6.16. The database was located on a local disk

23

NLJ
Q

Q
�

�
Filter

ScanR

ScanT

Figure 6: NLJS plan.

MJ
Q

Q
�

�
Sort

Filter

ScanR

Sort

ScanT

Figure 7: SMJS plan.

accessed through the SHORE interface. In order to test various operator trees under
controlled conditions, we allow the user to specify the physical plan to be used in exe-
cuting a query.

In addition to our online optimizer strategy (called LP), we experiment with two
suspend plans: (1) all-DumpState, where all operators follow DumpState, and (2)
all-GoBack, where all operators perform checkpointing and follow GoBack. These
suspend plans illustrate the possible performance impact of choosing the right strategy.
Although we do not explicitly show the performance of the technique where the system
performs periodic synchronous checkpointing and dumping state of all operators (its
performance is highly dependent on parameters such as the frequency of the dumping
operation), it can easily be seen that in terms of total overhead, all-DumpState cor-
responds to the ideal hypothetical implementation of such a strategy, where an oracle
performs checkpointing and dumping just once, i.e., just before suspension. In prac-
tice, due to the regular periodic dumping at synchronous checkpoints, the overhead
of this periodic synchronous checkpointing strategy would be much higher than our
approaches.

We compare the strategies over two metrics: (1) Total overhead time, which is
the total amount of extra work done due to query suspend and resume, and (2) Total
suspend time, which is the total amount of extra work done by the system at the time
of suspend. The latter metric is important because there may be constraints on the
available budget at suspension time.

6.1 Simple Query Plans
In this subsection, we use two simple query plans to experiment with the performance
of various strategies. Simple plans allow us to vary various query parameters in a
controlled manner in order to analyze their effect on performance.

The first plan NLJS (see Figure 6), consists of a block-based NLJ operator with a
filter as the left child. The outer buffer size is 200, 000 tuples. The second plan SMJS

(see Figure 7) has a merge join (MJ) operator. Both its children are two-phase merge
sorts; sort buffer size is 200, 000 tuples. The left sort operator has a filter as its child.
In both tables R and T , each tuple is 200 bytes long, with an integer key. Table R is
populated with 2.2 million unique tuples, with random unique integer key values.

24

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
tim

e
(s

ec
s)

Filter selectivity

LP (total)
All-goback (total)

All-dumpstate (total)
LP (suspend)

All-goback (suspend)
All-dumpstate (suspend)

Figure 8: NLJS , varying se-
lectivity.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

O
ve

rh
ea

d
tim

e
(s

ec
s)

Suspend point

LP (total)
All-goback (total)

All-dumpstate (total)
LP (suspend)

All-goback (suspend)
All-dumpstate (suspend)

Figure 9: SMJS , varying
suspend point.

All-goback
All-dumpstate

 0 20 40 60 80 100Suspend pt. 0
 0.2

 0.4
 0.6

 0.8
 1

Selectivity

 40
 30
 20
 10
 0

Overhead (secs)

Figure 10: NLJS , vary-
ing selectivity and suspend
point.

Effect of Filter Selectivity and Suspend Point We first show the effect of filter se-
lectivity (which determines recomputation cost), on the performance of different sus-
pend plans. We first use the NLJS plan with varying filter selectivity. The suspend
point occurs halfway through filling the outer buffer of NLJ, i.e., after reading 100, 000
tuples from the child. The results are shown in Figure 8. When the selectivity is very
low, it is costly to fill up the outer buffer of NLJ with 100, 000 tuples. On a suspend
at this point, the all-GoBack does not do well because the work has to be redone on
resume. On the other hand, all-DumpState does better because the work is not lost as
it is written out to disk at the time of suspend. Writing in SHORE is more expensive
than reading, and hence all-GoBack does better in terms of total query overhead for
selectivities greater than around 0.28. In terms of overhead at suspend time, however,
all-GoBack is always much better, because it needs to write out only a few bytes of
control state as opposed to a large amount of heap state in case of all-DumpState. For
this plan, there are no other better hybrid suspend plans, and the optimal suspend plan is
one of these two, depending on the filter selectivity. We see that our online LP strategy
always selects the best suspend plan, i.e., for low selectivities it selects all-DumpState

while for high selectivities it selects all-GoBack (suspend budget is unlimited in this
experiment). The same experiment was repeated with the SMJS plan, and the results
(not shown) follow a similar trend.

We next vary the suspend point for a plan, so that suspension occurs after some
percentage of the operator’s buffer has been filled. Figure 9 shows the result for the
SMJS plan (NLJS was found to give similar results). The x-axis varies the percentage
of the sort buffer filled up at suspension. Selectivity is fixed at 0.5. The suspend point
determines the amount of state to be written out in case of DumpState, or the amount of
state to be recomputed in case of GoBack. For this simple plan, if one strategy is better
than the other for a particular selectivity, it will remain better regardless of the suspend
point (at that selectivity). However, the difference between these two strategies will
increase as we move the suspend point towards the end of the buffer. At selectivity 0.5,
since GoBack is better than DumpState, we see the expected trend. This experiment
shows that the strategy choice becomes more vital if suspend occurs when an operator
has greater state in memory. Again, online LP always selects the best suspend plan.

Finally, Figure 10 displays the surface plot of total query overhead time for all-
GoBack and all-DumpState, over suspend points and selectivities for NLJS . Suspend

25

MJ
PPPP

����
Sort

NLJ
aaa

!!!
NLJ

Q
Q

�
�

Filter

ScanR

ScanT

ScanS

Sort

ScanU

G
Q

Q
�

�
G

G
Z

Z
�

�
D
@@��

D

G

G

G

D

G

Figure 11: Complex plan and optimal strategy.

 0

 10

 20

 30

 40

 50

 3 2 1

O
ve

rh
ea

d
tim

e
(s

ec
s)

Suspend point (million tuples read from R)

Online (total)
Static (total)

Online (suspend)
Static (suspend)

Figure 12: NLJS , online vs.
offline strategies.

0

10

20

30

40

50

60

all-dumpstate all-goback online LP
Strategy

O
ve

rh
ea

d
tim

e
(s

ec
s)

Total Suspend

Figure 13: Complex plan,
comparison of approaches.

 0

 10

 20

 30

 40

 50

 0 100000 200000 300000 400000 500000 600000
O

ve
rh

ea
d

tim
e

(s
ec

s)
Constraint

Total
Suspend

Figure 14: Complex plan,
varying suspend constraint.

point is again measured as the percentage of NLJ’s outer buffer filled up at suspend
time. The plot matches expected behavior: increasing selectivity changes the preferred
strategy, while increasing suspend point location within the buffer exacerbates the dif-
ference between the strategies.

Advantage of Suspend-Time Optimization In this experiment, we highlight the
importance of making decisions at suspend time by comparing the performance of the
online optimizer against one that uses offline statistics to make a strategy choice. We
use the NLJS plan as before. This time, the R table is filled with around 3 million
tuples. However, the data in the table has a skewed distribution such that for the initial
(approximately) two-thirds of the table, the filter selects only 1 in 10 tuples. For the
remaining portion of the table, the same filter selects 9 out of every 10 tuples. The
effective selectivity over the entire table is 0.385. From Figure 8, we see that GoBack

is better than DumpState for selectivities greater than around 0.28. Hence, a static
optimizer that uses table-level statistics to determine the suspend plan would choose
all-GoBack for this query. However, this suspend plan is not good for the portions of
the table where the dynamic selectivity is very low.

We perform suspension at various points of the outer table scan, and plot the total
query overhead time and suspend time for both the static and the online LP suspend
plans, against the suspend point (expressed in terms of number of R tuples after which

26

suspension occurs). The results are shown in Figure 12. We see that since our online
optimizer uses runtime statistics to decide the strategy, it correctly chooses the all-
DumpState suspend plan when suspension occurs in the first part of the table. Next, it
chooses the all-GoBack suspend plan in the second part of the table as expected. The
offline strategy, on the other hand, is unable to adapt dynamically.

6.2 Complex Query Plans
In previous experiments, the optimal suspend plan was one of the extremes i.e. all-
GoBack or all-DumpState. In this set of experiments, we examine more complex
query plans where the optimal suspend plan may be neither of these two extremes.

Suspend Plan and Performance We create a complex plan involving 10 operators,
as shown in Figure 11 (left). Table R contains 2.2 million tuples, while the selec-
tivity of the filter is set to 0.1. The outer buffers of NLJ and the sort buffers have
a size of 200, 000 tuples. We suspend query execution when the upper NLJ opera-
tor is around 85% full. The online optimizer chooses the suspend plan shown to the
right of Figure 11. This optimal plan is neither of the two extremes (all-GoBack and
all-DumpState). It is a combination of different strategies for different operators.

In Figure 13, we compare the performance of the online suspend plan against all-
GoBack and all-DumpState, in terms of total query overhead and overhead at suspen-
sion. We see that the online approach using the hybrid suspend plan is able to perform
much better than the purist techniques.

Varying Constraint on Suspend In this experiment, we increase the available sus-
pend budget and examine how the online optimizer chooses suspend plans. We use a
left-deep plan with 3 block-based NLJ operators, and a filter of selectivity 0.1. The
NLJ operators have different outer buffer sizes. Figure 14 shows the total overhead
and suspend overhead of the online optimizer’s chosen suspend plan, as we increase
the suspend budget (which we measured as a function of I/O read and write cost, and
is approximately proportional to time). For low budgets, the optimizer is forced to
choose all-GoBack, leading to high total overhead. As we increase the constraint, the
optimizer is able to choose better plans involving a mix of GoBack and DumpState

strategies. Thus, the total overhead reduces with a corresponding increase in suspend
time (within the provided constraint). Finally, when the suspend budget permits, it
switches to the optimal suspend plan with minimal query overhead.

7 Planning Ahead for Suspend/Resume
A standard DBMS query optimizer is entrusted with the task of choosing a near-optimal
execution plan for a given query, based on expected execution cost. However, some
query plans may be more amenable to suspend/resume than others and can perform
better in the presence of suspend requests. We argue that if the plan was chosen with-
out any consideration of suspend/resume at runtime, the plan may be suboptimal. If

27

we know the expected pattern of suspend requests, we should choose a query plan tai-
lored for such a situation. The following examples serve to motivate suspend-aware
query optimization. We leave the techniques for choosing the best execution plan with
suspend as future work.

Example 9. Consider a join between tables R(a, b) and S(c, d):
SELECT * FROM R,S WHERE R.a<100 and R.b=S.c;

R has 2, 200, 000 tuples while S has 250, 000 tuples. The selectivity of the filter predi-
cate is 0.1; i.e., around 220, 000 R tuples are returned by the filter immediately above
the table scan for R. Main memory can hold 150, 000 tuples. Let 100 tuples fit on a
disk page.

Assume that we have two possible query plans. One uses a hybrid hash join (HHJ)
that builds the in-memory hashtable on R. The second uses a sort-merge join (SMJ)
with a sort buffer of size 150, 000 tuples. Figure 15 shows the analytical performance
of these two plans (in terms of number of disk I/Os) with and without suspends. If there
are no suspends, HHJ is better, and is chosen by the optimizer. However, if a suspend
occurs, say during the last phase of join, SMJ performs much better.

0

10000

20000

30000

40000

50000

No suspend With suspend

Q
u
e
ry
 c
o
s
t
(I
/O
s
)

HHJ SMJ

Figure 15: HHJ vs. SMJ; with/without suspend.

Example 10. Consider the same query from Example 9. Now, R has 300, 000 tuples
while S has 350, 000 tuples. The selectivity of the filter predicate is 0.6 (i.e., 180, 000
R tuples are returned by the filter). Assume that table S is already sorted on c.

Assume that we have two possible query plans. One uses an NLJ with an outer
buffer that fits 90, 000 tuples. The optimizer would choose R as the outer table, and
the total cost in terms of I/Os, ignoring the cost of writing out the result, would be
3000+2×3500 = 10, 000 (we would need to scan the S table twice). If we instead use
a sort-merge join (SMJ) with a sort buffer that holds 10, 000 tuples, the total cost would
be 10, 100 I/Os (read 300, 000 R tuples, write 180, 000 sorted R tuples in sublists, read
180, 000 sorted R tuples during second phase of sort, and read 350, 000 presorted S
tuples). Hence, the optimizer would choose NLJ.

Now, assume that we know suspends will occur. If a suspend occurs when the outer
buffer in the NLJ plan has filled 80, 000 tuples, the overhead of suspend and resume

28

assuming the optimal online strategy (GoBack in this case), is around 1, 333 I/Os (we
need to recompute the 80, 000 tuples; with a selectivity of 0.6, we need to read around
133, 333 R tuples). On the other hand, the overhead of SMJ would be (in the worst
case, assuming the sort buffer is full) around 167 I/Os. The cost of the NLJ plan is
now 11, 333 I/Os whereas the cost of SMJ is 10, 267 I/Os, which means that SMJ is
now better. In fact, for any suspend point beyond 16, 020 tuples in the NLJ buffer, SMJ
is expected to outperform NLJ. On average, suspends may occur halfway through the
buffer; therefore, SMJ is better than NLJ on the average.

8 Related Work
Our techniques exploit the internal semantics of individual operators to support ef-
ficient suspend/resume of complex query plans in their entirety. To the best of our
knowledge, we know of no published work that addresses the same problem at such a
level.

Query Reoptimization Researchers have argued [20, 12, 16] for iterating between
optimization and execution for large queries. Our work is not intended to handle re-
optimization after resume, so in general it cannot be used for switching between dif-
ferent iterations in that setting. Conversely, while it may appear that plan-switching
techniques designed in that setting can be applied in query suspend/resume, they are
generally inadequate for various reasons: (1) They may be designed for switching ex-
ecution strategies of individual operators, and do not work on suspending an entire
query. (2) They may still leave large amounts of state in memory across switching
points, which is not an option for suspend/resume. (3) They may be designed to switch
at particular points in execution, and inefficient for unexpected suspends. Overall, we
see our work as complementary and orthogonal. Nevertheless, several connections are
worth pointing out.

Avnur et al. [1] propose adaptive reoptimization by switching join orders at mo-
ments of symmetry. While these moments are analogous to our operator checkpoints,
our focus is on suspending and resuming and entire query rather than making local plan
changes.

Markl et al. [16] propose progressive reoptimization of queries using a checkpoint
operator that validates the optimality of the query plan. A reoptimization usually trig-
gers re-execution from scratch or using intermediate results. On the other hand, we
define checkpoints at minimal-heap-state points in physical operators, support suspend
and resume at a finer granularity, including regular plans produced by standard query
optimizers.

Shah et al. [19] address the problem of partitioning stateful data flow operators
across shared-nothing nodes. Our work can handle the different problem of migrating
an entire data flow to a different node, which poses challenges and opportunities not
present in operator-level migration.

Ng et al. [17] propose dynamically reconfiguring query execution plans in a dis-
tributed environment. Ives et al. [10] propose dividing source data into regions with

29

different plans. Our suspend and resume techniques can be incorporated into these
strategies to provide suspend and resume support at the level of subplans.

Other Related Work The Condor DAGMan [11] tool addresses failure recovery for
an application consisting of set of tasks with dependencies. While it prevents applica-
tion restart, it does not support resumption at an intra-task level. Our physical approach
goes further and makes suspend decisions on a per-operator basis.

Labio et al. [13] considered the problem of resuming interrupted data warehouse
loads. Their load operators are black boxes, but can specify a set of high-level prop-
erties, which the system uses to optimize resume. Since we are dealing with database
queries instead of black-box transforms, we go much further. Our approach exposes
more optimization opportunities and challenges, and leads to more efficient resume.
Furthermore, they do not have a smart suspend phase like ours, which can explore the
trade-offs among various suspend/resume strategies using constrained optimization.

Liu et al. [14] target query execution in a memory-constrained environment where
stateful operators may need to spill some state to disk. They address the problem
of selecting the state to move to disk, to minimize performance hit. Our problem
of query suspend/resume is different. We cannot retain any state in memory across
suspend and resume, so we focus on a different trade-off: between dumping to disk
and reconstructing from a checkpoint.

9 Conclusion
Database queries are often long-running and occupy a lot of resources, such as memory.
A number of applications can benefit from database support for query suspend and
resume on demand. This task is challenging especially on modern systems, where
query operators often use large amounts of internal state during execution.

We proposed a novel query lifecycle that supports efficient suspend and resume
of queries. Our approach exploits the semantics of individual operators to checkpoint
proactively or reactively. We developed a suite of techniques and data structures for
coordinating these asynchronous checkpoints and enabling suspend/resume, with min-
imal impact to normal execution. We also formulated and solved the problem of choos-
ing the optimal suspend strategy at suspend time, using runtime statistics.

Experiments with both simple and complex query plans using PREDATOR showed
that our techniques offer much lower total overhead while meeting suspend time con-
straints. Hybrid suspend strategies were found to often perform better than purist tech-
niques where all operators choose the same strategy. The suspend-time optimizer in-
curred negligible overhead and was able to adapt dynamically to skewed distributions
in input data, and outperform simpler optimizers based on table-level statistics.

References
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Process-

ing. In SIGMOD, 2000.

30

[2] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton, D. Schuh,
M. Solomon, C. Tan, O. Tsatalos, S. White, and M. Zwilling. Shoring up Persis-
tent Objects. In SIGMOD, 1994.

[3] Condor Project. http://www.cs.wisc.edu/condor/.
[4] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann, 1999.
[5] H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete

Book. Prentice Hall, 2002.
[6] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi. Minimizing Completion Time

of a Program by Checkpointing and Rejuvenation. In SIGMETRICS, 1996.
[7] G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System.

In SIGMOD, 1990.
[8] G. Graefe. Query Evaluation Techniques for Large Databases. In ACM Comput-

ing Surveys, 1993.
[9] IBM DB2 Query Patroller. http://www.ibm.com/

software/data/db2/querypatroller/.
[10] Z. G. Ives, A. Y. Halevy, and D. S. Weld. Adapting to Source Properties in

Processing Data Integration Queries. In SIGMOD, 2004.
[11] J. Frey. Condor DAGMan: Handling Inter-Job Dependencies.

http://cs.wisc.edu/condor/dagman/.
[12] N. Kabra and D. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal

Query Execution Plans. In SIGMOD, 1998.
[13] W. J. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelik. Efficient Resumption

of Interrupted Warehouse Loads. In SIGMOD, 2000.
[14] B. Liu, Y. Zhu, and E. A. Rundensteiner. Run-Time Operator State Spilling for

Memory Intensive Long-Running Queries. In SIGMOD, 2006.
[15] G. Luo, J. F. Naughton, C. Ellmann, and M. Watzke. Toward a Progress Indicator

for Database Queries. In SIGMOD, 2004.
[16] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic.

Robust Query Processing Through Progressive Optimization. In SIGMOD, 2004.
[17] K. Ng, Z. Wang, R. Muntz, and E. Shek. On Reconfiguring Query Execution

Plans in Distributed Object- Relational DBMS. In ICPADS, 1998.
[18] P. Seshadri. PREDATOR: A Resource for Database Research. In SIGMOD

Record, 1998.
[19] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: An

Adaptive Partitioning Operator for Continuous Query Systems. In ICDE, 2003.
[20] M. Winslett. David DeWitt Speaks Out. In SIGMOD Record, 2002.

31

