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ABSTRACT
A common stream processing application is alerting, where the
data stream management system (DSMS) continuously evaluates
a threshold function over incoming streams. If the threshold is
crossed, the DSMS raises an alarm. The threshold function is often
calculated over two or more streams, such as combining temper-
ature and humidity readings to determine if moisture will form
on a machine and therefore cause it to malfunction. This requires
taking a temporal join across the input streams. We show that for
the broad class of functions called quasiconvex functions, the DSMS
needs to retain very few tuples per-data-stream for any given time
interval and still never miss an alarm. This surprising result yields a
large memory savings during normal operation. That savings is also
important if one stream fails, since the DSMS would otherwise have
to cache all tuples in other streams until the failed stream recov-
ers. We prove our algorithm is optimal and provide experimental
evidence that validates its substantial memory savings.
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1 INTRODUCTION
Joins over two or more data streams are ubiquitous in many appli-
cations. Most existing data stream management systems (DSMS’s),
such as Apache Spark [8] and Apache Flink [14], all support stream
joins. Typical join processing techniques are the classic symmetric
hash join algorithm and its variants [21], which need to buffer in-
termediate join state in main memory. This raises challenges when
processing stream joins with memory constraints, e.g., Internet of
Things (IoT) applications that run on edge devices such as Raspberry
Pi or cell phones, or when the join state is very large [7].

In this paper, we study one common class of stream queries in
practice, namely applying a threshold function over a stream join
to compute an alert. Our main observation is that if the threshold
function satisfies the mathematical property of quasiconvexity, then
we can drastically reduce the memory required for the join. Our
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technique omits tuples from the input streams without affecting
the query result.

Consider machinery on a manufacturing assembly line. A com-
mon requirement is that machines remain dry, since water would
interfere with their operation. To detect when equipment is in dan-
ger of collecting moisture, the maintenance staff monitors three
sensors: relative humidity ℎ, air temperature 𝑎, and surface temper-
ature 𝑠 . The sensors emit measurements for these values in three
separate data streams 𝐻,𝐴 and 𝑆 . Values from these streams are
then combined using the Magnus Formula [32]:

𝜙 = ln
(︃
ℎ

100

)︃
+ 18.678𝑎

257.14 + 𝑎 − 𝑠 (1)

If𝜙 exceeds 0, the surface temperature of themachinery has dropped
below the dew point of the air. This implies water will condense
at a higher rate than it evaporates, causing water to collect on the
surface of the machinery. This should trigger an alarm.

The Magnus formula should be applied to triples of sensor read-
ings that are within a time window of each other, that is, tuples in
the result of a temporal join. For example, if the window size is ten
seconds and stream elements 𝑠 ∈ 𝑆 , ℎ ∈ 𝐻 , and 𝑎 ∈ 𝐴 are within
ten seconds of each other, then the function should be applied to
the triple of readings [𝑠 , ℎ, 𝑎] to determine if they exceed the dew
point threshold.

Our primary observation is that for a broad class of threshold
functions we do not need to keep all tuples. Many tuples can simply
be omitted without any knowledge of tuples from other streams
and without ever missing an alarm.

During normal operation, the memory savings from omitting
these tuples is significant, because the factory may have thousands
of machines, each with its own sensors. The savings is also impor-
tant during abnormal operation. For example, suppose the humidity
sensor output significantly lags the machines’ surface-temperature
sensor output. Then the DSMS needs to cache all of the surface tem-
perature readings following the most recent humidity reading until
their corresponding humidity readings arrive. This costs memory.
Also, when the humidity readings finally arrive, the DSMS’s catch-
up processing risks a delay in triggering the alarm. Even worse,
if the cached surface temperature readings overflow memory, the
system might crash and alarms that should have been raised are
permanently lost.

If tuples are only needed to trigger the alarm, then our technique
can be used to filter them out on an edge device, thereby avoiding
the expense of sending them to a datacenter. However, sometimes
it may be necessary to capture all tuples in persistent storage for
later analysis. In this case, even though all tuples must be read in,
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Figure 1: Simple tuple omission depiction.

most of them can be streamed immediately to storage. Only the
small number that are needed for the threshold calculation will
consume main memory for a non-negligible time period.

To illustrate this intuition, consider a simple case where we have
only two streams 𝑅 ⊲⊳ 𝑆 and the threshold formula is 𝑓 (𝑟, 𝑠) = 𝑟 + 𝑠 .
Assume tuples 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 join if their timestamps are within
a time window of length 𝜔/2 from each other. This is known as
an interval join and is explained in detail in Section 2.1. Suppose 𝑅
sees a sequence of tuples (𝑡 , 𝑣), where 𝑡 is a timestamp and 𝑣 is the
value of a sensor reading.

𝑟0 = (𝑡0, 𝑣0), 𝑟1 = (𝑡1, 𝑣1), 𝑟2 = (𝑡2, 𝑣2)

Assume 𝑡0 < 𝑡1 < 𝑡2, {𝑟0, 𝑟1, 𝑟2} are within 𝜔 of each other (i.e.,
𝑡2 − 𝑡0 < 𝜔), 𝑣1 < 𝑣0, and 𝑣1 < 𝑣2. (See the bottom of Figure 1.)
Observe that if 𝑟1 joins with a tuple 𝑠 from stream 𝑆 , then 𝑠 must
join with at least one of 𝑟0 and 𝑟2. Since 𝑟0 carries a higher value,
if 𝑓 (𝑣1, 𝑠) = 𝑣1 + 𝑠 > T , then 𝑓 (𝑣0, 𝑠) = 𝑣0 + 𝑠 > 𝑣1 + 𝑠 > T . (See
the top of Figure 1.) Similarly for 𝑟2 and 𝑓 (𝑣2, 𝑠). Since at least one
of 𝑟0 ⊲⊳ 𝑠 and 𝑟2 ⊲⊳ 𝑠 will be passed to the threshold function 𝑓 , 𝑟1
is redundant. That is, if we omit 𝑟1, an alarm is still raised and the
monitoring system still accomplishes its goal. The remainder of
this paper formalizes and generalizes this simple intuition.

Our contributions are as follows
(1) We show that for a large class of threshold functions over the

result of a temporal join of two streams, the system needs to
retain very few tuples per-data-stream in each time interval
yet never miss a alarm.

(2) We prove that our technique is optimal in the sense that it
deletes as many tuples as possible.

(3) We generalize our technique to multi-stream joins and show
for which join topologies it does and does not work.

(4) We provide experimental evidence that validates the tech-
nique’s substantial memory savings.

The paper is arranged as follows. Section 2 describes necessary
background to understand our omission policy. Section 3 describes
our omission algorithm in greater detail as well as its limitations.
Section 4 generalizes our omission algorithm to the multi-stream

Figure 2: Sliding join between 𝑅 and 𝑆 . Tuple 𝑟 defines time
interval [𝑡𝑟 − 𝜔/2, 𝑡𝑟 + 𝜔/2]. Tuples 𝑠2, 𝑠3, 𝑠4 join with 𝑟 since
they live inside this interval. Tuple 𝑠1 falls outside the inter-
val and is therefore not a joining partner.

join environment. Section 5 explores the question of automatically
checking if a threshold function is amenable to our omission algo-
rithm. Section 6 reports on experiments that evaluate our method
against synthetic and real world workloads. Section 7 discusses
past work and how it relates to our contribution.

2 BACKGROUND
In this section, we discuss necessary background to understanding
our contributions.

2.1 Temporal Joins
There are two semantic considerations when defining a time-based
join between two or more streams. The first is how to assign times-
tamps to tuples. Using event time semantics, the event source assigns
a timestamp to each base stream tuple that remains with the tuple
as it passes through the DSMS. Using processing time semantics,
the DSMS assigns a timestamp to each stream tuple when it arrives,
that is, when it is “processed”. Event time semantics are preferred
as event-time timestamps are not susceptible to network failures
or latency concerns. The timestamps are also a more accurate rep-
resentation of the base tuple data. Processing time semantics are
generally easier to handle as tuples can never arrive out of order
since the clock at the DSMS is the ground truth. In this work we
use event time semantics as it is more representative of current
systems.

The second consideration is how we define the join predicate.
Again there are generally two approaches: sliding window and
hopping window. In sliding window semantics (a.k.a. interval join),
tuples 𝑟 and 𝑠 join if their event times fall within𝜔/2 of one another.
See Figure 2. In hopping window join semantics, the windows have
a specific length 𝜔 and move forward in steps of size 𝛿 . That is, if
the first window is [0, 𝜔], then the second is [𝛿, 𝛿 + 𝜔], the third is
[2𝛿, 2𝛿 +𝜔], and so on. Tuples 𝑟 and 𝑠 join if there exists a window
𝑊 such that 𝑡𝑟 , 𝑡𝑠 ∈𝑊 . Note that tuples may fall within multiple
windows if 𝛿 < 𝜔 .

Both sliding and hopping semantics define a collection of time
windows where tuples join if there exists a window in that col-
lection that contains both. Sliding windows define a superset of
the windows defined by hopping windows. In fact, assuming some
nontrivial and bounded event time space, hopping defines a finite
number of windows whereas sliding defines an infinite number.
Thus, while we focus on sliding semantics, it should be clear that
our methods are easily applicable to hopping semantics as well.
However, the discrete nature of hopping yields more obvious and
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straightforward omission techniques. For the rest of the paper we
use ‘interval join’ to mean a ‘sliding window’ temporal join.

2.2 Quasiconvex Functions
We say a function 𝑓 : R → R is quasiconvex iff for all 𝑥1, 𝑥2 ∈ R,
for all 𝜆 ∈ [0, 1]

𝑓
(︁
𝜆𝑥1 + (1 − 𝜆)𝑥2

)︁
≤ max

{︁
𝑓 (𝑥1), 𝑓 (𝑥2)

}︁
.

That is, for all pairs of points 𝑥1, 𝑥2, when 𝑓 is evaluated on a point
𝑥 in between 𝑥1 and 𝑥2, 𝑓 (𝑥) cannot exceed both 𝑓 (𝑥1) and 𝑓 (𝑥2).
We provide an example in Figure 3. We can generalize the notion of
quasiconvexity to a function over multiple variables, 𝑓 : R𝑛 → R,
where values 𝑥1, 𝑥2 ∈ R𝑛 are vector valued.

We do not require that a function be globally quasiconvex. We
only require it to be quasiconvex with respect to any streaming
input on which we apply our omission policy. A multivariate func-
tion 𝑓 : (𝑥1, 𝑥2, . . . , 𝑥𝑛) → R is quasiconvex with respect to 𝑥1 if for
any values 𝑥𝑖≠1 the univariate function 𝑔(𝑥1) = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) is
quasiconvex.

Many classes of functions are quasiconvex. Examples include
convex functions, linear functions, monotonic functions (including
step functions, such as floor and ceiling), positive quadratic, loga-
rithmic, exponential, simple inequality boolean triggers, and the
application of trained linear or logistic regressors. The question
of how to automatically determine if a function is quasiconvex is
addressed in Section 5.

3 METHOD
The basic form of our problem is as follows: We are given two
streams 𝑅 and 𝑆 . Each tuple of 𝑅 takes the form 𝑟 = (𝑡𝑟 , 𝑣𝑟 ) where 𝑡𝑟
is the event time and 𝑣𝑟 is the value. Similarly, each tuple of 𝑆 takes
the form 𝑠 = (𝑡𝑠 , 𝑣𝑠 ). We are also given a function 𝑓 : R × R→ R
where 𝑓 ingests values taken from an interval join 𝑅 ⊲⊳ 𝑆 . Our goal
is to trigger an alarm whenever there exists some tuples 𝑟 ∈ 𝑅 and
𝑠 ∈ 𝑆 that join and 𝑓 (𝑣𝑟 , 𝑣𝑠 ) > T for a given threshold T . Going
forward, we will often abuse notation and write 𝑓 (𝑟, 𝑠) instead of
𝑓 (𝑣𝑟 , 𝑣𝑠 ).

Our primary observation is this: if 𝑓 is quasiconvex w.r.t. 𝑆 ,
and there exist tuples 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆 each of which joins with some
tuple 𝑟 ∈ 𝑅, then we may omit the tuple of 𝑆 with middle value.
That is, if 𝑣𝑠1 ≤ 𝑣𝑠2 ≤ 𝑣𝑠3 then as far as tuple 𝑟 is concerned, we
may omit 𝑠2. The reason is that quasiconvexity guarantees that if
𝑓 (𝑠2, 𝑟 ) > T , then at least one of 𝑓 (𝑠1, 𝑟 ), 𝑓 (𝑠3, 𝑟 ) also exceeds T
and an alarm will be raised even with 𝑠2 omitted. Stated formally,

Figure 3: Example quasiconvex function.

if 𝑓 is quasiconvex w.r.t. S, then

𝑓 (𝑠2, 𝑟 ) > T =⇒
(︂
𝑓 (𝑠1, 𝑟 ) ≥ 𝑓 (𝑠2, 𝑟 )

)︂
∨
(︂
𝑓 (𝑠3, 𝑟 ) ≥ 𝑓 (𝑠2, 𝑟 )

)︂
.

This observation generalizes to a sufficient condition for omitting
tuples from the maintained state of 𝑆 independent of any specific
tuple from 𝑅: for all tuples 𝑠 ∈ 𝑆 , if there exists a pair of tuples that
occurs before and after 𝑠 , have values greater than 𝑣𝑠 , and occur
within 𝜔 of each other, and similarly there exists a pair of tuples
that occurs before and after 𝑠 , have values less than 𝑣𝑠 , and occur
within 𝜔 of each other, then we may omit 𝑠 from 𝑆 ’s cache. We call
this tuple 𝑠 doubly bracketed. This suggests a policy for reducing the
amount of memory by deleting tuples that are doubly bracketed.

This observation can be specialized for monotonic functions. In
this scenario, a singly bracketed tuple may safely be omitted. More
specifically, if the function is monotonic increasing (decreasing) we
may omit any tuple that is bracketed by two tuples with greater
(lesser) value.

Is this omission criterion “optimal”? That is, is the ability to omit
future tuples unaffected by omitting a tuple 𝑠? The answer is yes.
Before proving it Section 3.3, we define some useful terminology
and present the algorithm for omitting tuples.

3.1 Terminology
Intuitively a tuple 𝑠 is above bracketed if there exist tuples before
and after 𝑠 whose values are greater than 𝑣𝑠 . We formalize this and
related concepts in the following definitions.

Definition 3.1 (Above/Below Bracketed). A tuple 𝑠 is above (resp.
below) bracketed iff there exist tuples 𝑠𝑒 , 𝑠ℓ s.t.

(1) 𝑡𝑠𝑒 < 𝑡𝑠 < 𝑡𝑠ℓ
(2) 𝑣𝑠𝑒 , 𝑣𝑠ℓ > 𝑣𝑠 resp. (𝑣𝑠𝑒 , 𝑣𝑠ℓ < 𝑣𝑠 )
(3) 𝑡𝑠ℓ − 𝑡𝑠𝑒 ≤ 𝜔

(I.e., 𝑒 and 𝑙 are shorthands for “earlier” and “later”.) Tuples 𝑠𝑒 , 𝑠ℓ , are
called an above bracket (resp. below bracket). We refer to a quartet
of tuples that form an above and below bracket of the same tuple
as simply a bracket.

Definition 3.2 (Maximal/Minimal). A tuple 𝑠 is maximal (resp.
minimal) iff there exists an interval 𝐼 of length 𝜔 containing 𝑠

where for all tuples 𝑠 ′ ∈ 𝐼 , 𝑣𝑠 ≥ 𝑣𝑠′ (resp. 𝑣𝑠 ≤ 𝑣𝑠′ ).

Definition 3.3 (Maximally/Minimally Bracketed). A tuple 𝑠 is
maximally (resp. minimally) bracketed iff there exist tuples 𝑠𝑒 , 𝑠ℓ
s.t.

(1) 𝑡𝑠𝑒 < 𝑡𝑠 < 𝑡𝑠ℓ
(2) 𝑣𝑠𝑒 , 𝑣𝑠ℓ > 𝑣𝑠 (resp. 𝑣𝑠𝑒 , 𝑣𝑠ℓ < 𝑣𝑠 )
(3) 𝑡𝑠ℓ − 𝑡𝑠𝑒 ≤ 𝜔

(4) 𝑠ℓ and 𝑠𝑒 are maximal (resp. minimal)

An above bracketed tuple cannot be maximal because any win-
dow containing 𝑠 would also have to contain 𝑠𝑒 and/or 𝑠ℓ , implying
that 𝑠 is not maximal in that window. Equivalently, any maximal
tuple cannot be above bracketed. Similarly, no below bracketed
tuple can be minimal.

3.2 Greedy Algorithm
Algorithm 1 presents a greedy approach to omitting tuples using
the above reasoning. As tuples arrive from the input stream, they
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are inserted into a generic tuple store (TS). In most cases, the store
will sort the entries on event time. If we regard the TS as sorted
left-to-right with newest (highest timestamp) elements on the right,
we can use left and right as synonyms for earlier and later.

We assume TS provides a generic TS.search(𝑡) function that
provides a pointer to the element in TS with largest timestamp
≤ 𝑡 . If TS allows duplicate timestamps, then we arbitrarily break
ties by the stored value and TS.search(𝑡) returns the “first” such
tuple.

Each tuple is stored in TS with four additional attributes: 𝑙𝑏𝑠 ,
𝑙𝑎𝑠 , 𝑟𝑏𝑠 , 𝑟𝑎𝑠 . They denote the time difference between the given
tuple 𝑠 and the chronologically closest known tuple on its left with
value below, left with value above, right with value below, and right
with value above, respectively. These values are initialized to∞ at
line 5 in the pseudocode.

When a new tuple 𝑠 arrives, we probe the tree using the tuple’s
timestamp. Assuming TS allows duplicate timestamps (i.e., not a
red-black tree), we first check any tuples that may have the same
timestamp (lines 7 - 16). We then traverse left (lines 19 - 28) and
right (lines 31 - 40) searching for above and below bracketing pairs.
If 𝑠 completes a bracket for a tuple in TS, then the newly bracketed
tuple is dropped from TS. If the probe reveals a bracket of 𝑠 that
already exists in TS, we omit 𝑠 .

The pseudocode assumes the use of doubly-closed interval bound-
ary semantics. For doubly-open interval boundary semantics, swap
≤ /≥ for < /> (or vice-versa) at lines 19, 31 in Algorithm 1, and
line 2 in Algorithm 2. We discuss mixed boundary interval join
semantics in Section 3.4.

3.3 Global Optimality of Greedy Algorithm
Algorithm 1 omits a tuple when it finds an above bracketing pair
and a below bracketing pair of neighboring tuples. We want to
verify that doing so will not harm our chances of omitting other
tuples later. First, we will consider above bracketing tuples when
deciding whether to omit the tuple. It will become clear that a
symmetric argument holds for below bracketing pairs and that the
conditions may be considered separately. We simply evaluate the
conjunction of both conditions to decide on omission.

Theorem 3.1. Algorithm 1 leads to a globally optimal state.

It is sufficient to prove that if a tuple is above bracketed, then
it is also maximally bracketed, because any above bracketed tuple
must have an above bracketing pair of tuples both of which are
maximal. Since a maximal tuple cannot be above bracketed, it will
never be omitted. This implies that the maximal tuples will always
be available to above bracket the original tuple in question, and
thereby justify its omission.

Lemma 3.2. A tuple is above bracketed iff it is maximally bracketed.

The reader may skip the proof to Lemma 3.2 without having it
detract from understanding the rest of the paper.

Proof. Assume we are using closed interval semantics. The
proof for open interval semantics is nearly identical. In the proof,
we will refer to above bracketed tuples simply as bracketed. If two
tuples have equal value, we arbitrarily choose the later one to have

Algorithm 1Maintains a minimal collection of necessary tuples
from stream 𝑆 .
1: procedure Greedy(𝑆)
2: TS ← Store[t, 𝑣, 𝑙𝑎, 𝑙𝑏, 𝑟𝑎, 𝑟𝑏] () ⊲ empty tuple store
3: while 𝑆.has_next() do
4: 𝑠 ← 𝑆.next()
5: 𝑙𝑎𝑠 , 𝑙𝑏𝑠 , 𝑟𝑎𝑠 , 𝑟𝑏𝑠 ←∞
6: 𝑠 ′ ← TS.search(𝑡𝑠 )
7: while 𝑡𝑠 = 𝑡𝑠′ do
8: if 𝑣𝑠′ = 𝑣𝑠 then
9: continue ⊲ 𝑠 is duplicate of 𝑠 ′: omit 𝑠 .
10: else if 𝑣𝑠 < 𝑣𝑠′ then
11: 𝑙𝑎𝑠 , 𝑟𝑎𝑠 , 𝑙𝑏𝑠′, 𝑟𝑏𝑠′ ← 0
12: if Bracketed(𝑠 ′) then TS.remove(𝑠 ′)
13: else
14: 𝑙𝑏𝑠 , 𝑟𝑏𝑠 , 𝑙𝑎𝑠′, 𝑟𝑎𝑠′ ← 0
15: if Bracketed(𝑠 ′) then TS.remove(𝑠 ′)
16: 𝑠 ′ ← succ(𝑠 ′)
17: 𝑠 ′ ← TS.search(𝑡𝑠 )
18: if 𝑡𝑠 = 𝑡𝑠′ then 𝑠 ′ ← prev(𝑠 ′)
19: while (𝑙𝑎𝑠 = ∞∨ 𝑙𝑏𝑠 = ∞) ∧ 𝑡𝑠 − 𝑡𝑠′ ≤ 𝜔 do
20: if 𝑣𝑠 < 𝑣𝑠′ then
21: 𝑙𝑎𝑠 ← min(𝑙𝑎𝑠 , 𝑡𝑠 − 𝑡𝑠′)
22: 𝑟𝑏𝑠′ ← min(𝑟𝑏𝑠′, 𝑡𝑠 − 𝑡𝑠′)
23: if Bracketed(𝑠 ′) then TS.remove(𝑠 ′)
24: else if 𝑣𝑠 > 𝑣𝑠′ then
25: 𝑙𝑏𝑠 ← min(𝑙𝑏𝑠 , 𝑡𝑠 − 𝑡𝑠′)
26: 𝑟𝑎𝑠′ ← min(𝑟𝑎𝑠′, 𝑡𝑠 − 𝑡𝑠′)
27: if Bracketed(𝑠 ′) then TS.remove(𝑠 ′)
28: 𝑠 ′ ← prev(𝑠 ′)
29: 𝑠 ′ ← TS.search(𝑡𝑠 )
30: while 𝑡𝑠 = 𝑡𝑠′ do 𝑠 ′ ← succ(𝑠 ′)
31: while (𝑟𝑎𝑠 = ∞∨ 𝑟𝑏𝑠 = ∞) ∧ 𝑡𝑠′ − 𝑡𝑠 ≤ 𝜔 do
32: if 𝑣𝑠 < 𝑣𝑠′ then
33: 𝑟𝑎𝑠 ← min(𝑟𝑎𝑠 , 𝑡𝑠′ − 𝑡𝑠 )
34: 𝑙𝑏𝑠′ ← min(𝑙𝑏𝑠′, 𝑡𝑠′ − 𝑡𝑠 )
35: if Bracketed(𝑠 ′) then TS.remove(𝑠 ′)
36: else if 𝑣𝑠 > 𝑣𝑠′ then
37: 𝑟𝑏𝑠 ← min(𝑟𝑏𝑠 , 𝑡𝑠′ − 𝑡𝑠 )
38: 𝑙𝑎𝑠′ ← min(𝑙𝑎𝑠′, 𝑡𝑠′ − 𝑡𝑠 )
39: if Bracketed(𝑠 ′) then TS.remove(𝑠 ′)
40: 𝑠 ′ ← succ(𝑠 ′)
41: if ¬Bracketed(𝑠) then
42: TS.insert(𝑡𝑠 , 𝑣𝑠 , 𝑙𝑎𝑠 , 𝑙𝑏𝑠 , 𝑟𝑎𝑠 , 𝑟𝑏𝑠 )

Algorithm 2 Checks if tuples 𝑠 is bracketed
1: procedure Bracketed(𝑠)
2: if 𝑙𝑎𝑠 + 𝑟𝑎𝑠 ≤ 𝜔 ∧ 𝑙𝑏𝑠 + 𝑟𝑏𝑠 ≤ 𝜔 then
3: return True
4: else
5: return False
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(a) {𝑎𝑖 } and {𝑏 𝑗 } sequences.

(b) {𝐼𝑘 } sequence.

Figure 4: Visualization of constructive proof.

the “higher” value. Trivially, maximally bracketed implies bracketed.
It remains to prove that bracketed implies maximally bracketed. The
proof is constructive. Suppose there exists a bracketed tuple 𝑠 with
bracketing pair 𝑠1, 𝑠2. Define two sequences of tuples 𝑎0, 𝑎1, 𝑎2, . . . ,
and 𝑏0, 𝑏1, 𝑏2, . . . that extend backwards and forwards in time from
𝑠 . Let 𝑎0 = 𝑏0 = 𝑠 . For 𝑖 > 0 let 𝑎𝑖 be recursively defined as the
latest element earlier than 𝑎𝑖−1, and later than 𝑡𝑠 − 𝜔 , with value
greater than 𝑎𝑖−1. More formally, for 𝑖 > 0:

𝑎𝑖 = arg max
𝑠∈𝑆

{︁
𝑡𝑠 |𝑡𝑠 − 𝜔 ≤ 𝑡𝑠 < 𝑡𝑎𝑖−1 , 𝑣𝑠 > 𝑣𝑎𝑖−1

}︁
Similarly for 𝑏 𝑗 where 𝑗 > 0:

𝑏 𝑗 = arg min
𝑠∈𝑆

{︂
𝑡𝑠 |𝑡𝑏 𝑗−1 < 𝑡𝑠 ≤ 𝑡𝑠 + 𝜔, 𝑣𝑠 > 𝑣𝑏 𝑗−1

}︂
A visualization of these sequences is in Figure 4a. Other tuples may
appear in the time-line but not all tuples end up as elements of
{𝑎𝑖 } or {𝑏 𝑗 }. Although the bracketing pair 𝑠1, 𝑠2 might not actu-
ally be elements of the {𝑎𝑖 }, {𝑏 𝑗 } sequences, the existence of 𝑠1, 𝑠2
guarantees that the sequences are nonempty and 𝑡𝑏1 − 𝑡𝑎1 ≤ 𝜔 .

We construct a sequence of intervals and associated heights
startingwithwhichever of𝑎1 or𝑏1 has a lesser value.WLOG assume
it is 𝑎1. The first interval under consideration is 𝐼1 = [𝑡𝑎1 , 𝑡𝑎1 +
𝜔] with initial height 𝑣𝑎1 . Intervals (and heights) are recursively
defined as follows: If there exist values from the opposite tuple
sequence that fall inside the interval 𝐼𝑘 , and whose value exceeds

ℎ𝑘 , then we select the closest (with respect to time) such tuple as
the new starting point for 𝐼𝑘+1 and set the new height ℎ𝑘+1 as the
value of said tuple. If the opposite tuple sequence is {𝑎𝑖 }, we choose
the latest such 𝑎𝑖 . If the opposite tuple sequence is {𝑏 𝑗 }, we choose
the earliest such 𝑏 𝑗 . By construction of the {𝑎𝑖 }, {𝑏 𝑗 }, the tuple that
is time-wise closest value to 𝑠 on the opposite side of 𝑠 must be a
member of either {𝑎𝑖 } or {𝑏 𝑗 }. See Figure 4b.

Note thatℎ𝑘 is a strictly increasing sequence of values with upper
bound max(max𝑖 (𝑎𝑖 ),max𝑗 (𝑏 𝑗 )). Thus there must exist some final
interval 𝐼 ′ (with height ℎ′) where there does not exist tuples on the
opposite side of 𝑠 that exceed ℎ′. WLOG assume 𝐼 ′ is anchored on
an element 𝑎′ of {𝑎𝑖 }. In Figure 4b, this interval is 𝐼5 with anchor
𝑎′ = 𝑎4 and height ℎ′ = 𝑣𝑎4 . By construction of the {𝐼𝑘 } sequence,
the interval contains 𝑠 and must contain at least one element 𝑏 ′ of
{𝑏 𝑗 }. This is because the previous interval was anchored at a point
𝑏 where 𝑎′ is within 𝜔 of 𝑏. (In Figure 4b, this tuple is 𝑏 ′ = 𝑏4.) By
construction, 𝑎′ and 𝑏 ′ form a bracketing pair on 𝑠 . Furthermore,
𝑎′ is maximal on the interval 𝐼 ′. It remains to prove that 𝑏 ′ is also
maximal. Consider the interval 𝐼 ′′ = [𝑡𝑎′ + 𝛿, 𝑡𝑎′ +𝜔 + 𝛿] where we
choose 𝛿 sufficiently small that no tuples appear in the intervals
(𝑡𝑎′, 𝑡𝑎′ + 𝛿] and (𝑡𝑎′ + 𝜔, 𝑡𝑎′ + 𝜔 + 𝛿]. This is only guaranteed
possible when using doubly-closed, or doubly-open join interval
boundary semantics. When using mixed interval boundaries (left-
closed-right-open, left-open-right-closed), the existence of such
a 𝛿 is not guaranteed. Section 3.4 presents a counterexample to
Theorem 3.1 when using mixed boundaries along with further
discussion.

We wish to show that 𝑏 ′ is maximal in 𝐼 ′′. By construction, there
cannot exist any tuples to the right of 𝑠 whose value is greater than
𝑣𝑏′ . Assume towards contradiction that there exists some 𝑎′′ that
lies inside 𝐼 ′′ andwhose value exceeds 𝑣𝑏′ . This would imply that𝑎′′
lives in the most recent interval anchored at a tuple from {𝑏 𝑗 }. Call
this tuple 𝑏 ′′. We have 𝑣𝑎′′ > 𝑣𝑏′ =⇒ 𝑣𝑎′′ > 𝑣𝑏′′ . We know such
an interval exists in {𝐼𝑘 } since we began anchoring at the lower of
𝑎1 and 𝑏1 and hence at least two intervals (at least one anchored
from both {𝑎𝑖 } and {𝑏 𝑗 }) are in the sequence {𝐼𝑘 }. In Figure 4b, this
tuple is 𝑏 ′′ = 𝑏3. This is a contradiction because it would imply that
𝑎′′ should have been chosen to anchor 𝐼 ′ instead of 𝑎′. Recall the
anchors for the {𝐼𝑘 } based on closest (w.r.t. time) higher value in the
opposite sequence, not simply the highest. Therefore, no such 𝑎′′

can exist. In more detail, no element to the left of 𝑠 in the interval
𝐼 ′′ may exceed 𝑣𝑏′ and thus 𝑏 ′ is maximal in 𝐼 ′′. Hence 𝑎′ and 𝑏 ′
are both maximal in some interval and form a maximal bracket on
𝑠 . □

3.4 Mixed Boundary Interval Semantics
We present a counter example to Theorem 3.1 when using mixed
boundary interval semantics. Let the join interval be over a left-
closed-right-open interval with 𝜔 = 3. Our workload consists of 5
tuples (see Figure 5):

𝑠0 = (0, 3), 𝑠1 = (1, 1), 𝑠2 = (2, 0), 𝑠3 = (3, 2), 𝑠4 = (4, 4)
We wish to justify the omission of 𝑠2. The interval 𝐼 = [0.5, 3.5)
and pair 𝑠1 and 𝑠3 imply 𝑠2 is above bracketed. It remains to show
that 𝑠2 is not maximally bracketed. Clearly, with value 1, tuple
𝑠1 is not maximal: any interval containing 𝑠1 must contain either
𝑠0 or 𝑠3. Therefore any maximal bracketing of 𝑠2 must involve 𝑠0.
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Figure 5: Mixed boundary counter example.

However, no interval exists that contains both 𝑠0 and the closest
tuple right of 𝑠2, namely 𝑠3. Therefore no maximal bracket exists
and the statement of Theorem 3.1 fails. This workload also yields a
counter example for left-open-right-closed interval join semantics.

We emphasize that it is still “safe” to deploy our omission policy
here. It just lacks a guarantee of global optimality. However, the
practitioner should be confident that the retained tuples are ex-
tremely close to optimal, although not easily provably so. We may
simply pretend the query is operating under doubly-open interval
boundary semantics and omit tuples based on this assumption. For
example, if the semantics are left-closed-right-open with interval
length 𝜔 , we execute our omission strategy based on left-open-
right-open interval of length 𝜔 . This might lead to slightly more
tuples being retained than necessary, but the system will not suffer
any false negatives while still omitting many tuples.

3.5 Further Discussion
We wish to highlight a few additional aspects of our greedy ap-
proach. First, our algorithm is robust to out-of-order streams. This
is true both in terms of delay differences between two streams
and out-of-order behavior within the same stream. In the different
streams scenario two tuples 𝑟, 𝑠 from different streams arrive out
of order. That is, we have 𝑡𝑟 < 𝑡𝑠 but 𝑠 arrives ahead of 𝑟 due to
differences in stream latency. It is less obvious how tuples from the
same stream may arrive out of order, but it is certainly possible, e.g.,
if a single logical stream is the union of multiple physical streams.

Second, our omission algorithm may be pushed down to the
emitter. This saves network bandwidth, not just memory usage.
Furthermore, in the event of a network failure the memory required
to cache results before delivering them to the central processing
node would be significantly reduced. This extends the state savings
benefits across the entire system.

Finally, while we focus on joins, our omission policy may be
applied in a setting where a single stream provides input parameters
to the function. However, if the threshold function is quasiconvex,
the calculation of the function is likely to be relatively simple, in
which case it is efficient simply to execute the function at the edge
node and skip any kind of state management. Still, if the execution
of the function is an external service or otherwise "expensive", then
our method may again be useful.

4 GENERALIZATION TO MULTIJOINS
This section generalizes our strategy to multijoin settings. In the
two stream scenario, Algorithm 1 may be applied to a single stream
independent of the join partner and relying only on knowledge of

SELECT f(R.v, S.v, U.v) FROM R, S, U
WHERE |R.t - S.t| <= 1 AND |U.t - S.t| <= 1;

(a) Multistream query SQL.

(b) Multistream interval intersection.

Figure 6: Multistream Query.

the interval size 𝜔 . This is because the options for join predicates
are highly limited. With more streams the choice of join topology is
more complex and the omission policy must applied more carefully.

Consider the chain joins defined by the SQL query in Figure
6a. Streams 𝑅 and 𝑈 directly join to 𝑆 but not to each other. This
relationship is depicted in Figure 6b. It is not safe to omit a bracketed
tuple from the state of stream 𝑆 using Algorithm 1. For example,
suppose tuple 𝑠 is bracketed by 𝑠 ′ and 𝑠 ′′ and thus omitted. Tuple 𝑠 ′
fails to join with 𝑟 while tuple 𝑠 ′′ fails to join with𝑢. The omission of
𝑠 has led to no joined output tuples being delivered to the threshold
function.

However, it is still possible to apply the omission policy to tuples
from streams 𝑅 and 𝑈 . This is because they do not have to worry
about the intersections of multiple intervals.

In general, we may omit tuples from any peripheral streams
in the join topology, that is, any stream that is temporally joined
directly with only one other stream. Conversely, a stream is internal
if it is temporally joined to more than one other stream.

This suggests that join topologies heavily influence the applica-
bility of our omission policy. For instance, a chain join only allows
tuples from the two end streams to be omitted while all internal
streams must be cached in full (see Figure 7b). However, such a
chain join in the context of streams seems unlikely, since the times-
tamps from contributing base tuples might stretch unnaturally over
the event-time space. An alternative is a star join topology where
one stream is chosen to be the internal center of the star while all
other streams are peripheral (see Figure 7c). The star query allows
the application of our omission policy on all but the central stream,
potentially a major savings.

Arguably the most natural join topology is where every pair
of tuples contributing to a join output must be within 𝜔 of one
another1, that is, a clique query (see Figure 7a). One might expect
a clique to be the worst case join topology for our omission policy,
since there are no peripheral streams. Surprisingly however, in
a clique query our omission algorithm may be applied to every
stream!

We define the neighborhood of a stream 𝑆 in a join topology to
be set of all of streams with which 𝑆 joins directly. For any query
topology, our omission policymay be applied to every streamwhose
1We switch from pairwise distance𝜔/2 to𝜔 in the multijoin scenario. The two stream
scenario is a special case where we are allowed to omit tuples using intervals whose
length is twice the pairwise distance bound.
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(a) Clique. (b) Chain. (c) Star.

Figure 7: Applicability of our omission policy across differ-
ent join topologies. Streams highlighted in red may omit tu-
ples safely.

neighborhood is a clique. That is, for any stream 𝑆 , for any pair
of distinct streams 𝑆 ′, 𝑆 ′′ where 𝑆 joins with 𝑆 ′ and 𝑆 ′′ directly,
then 𝑆 ′ and 𝑆 ′′ must join directly as well in order to omit tuples
from 𝑆 . We formalize this statement in the following Theorem and
Corollary.

Theorem 4.1. Algorithm 1 may be applied safely to every stream
whose neighborhood in the join topology is a clique.

Corollary 4.1.1. Algorithm 1 may be applied safely to every
stream in a clique query.

In order to prove this we start with a short lemma.

Lemma 4.2. Consider a clique query Q = (⊲⊳𝑖 𝑆𝑖 ), where all joins
are interval joins over an interval of length𝜔 . For every output (⊲⊳𝑖 𝑠𝑖 )
of Q, there is an interval 𝐼 of length 𝜔 that contains the timestamps
of all tuples in (⊲⊳𝑖 𝑠𝑖 ).

Proof. Let 𝑡𝑖 be the timestamp of 𝑠𝑖 for all 𝑖 . Let 𝑡min = min𝑖 𝑡𝑖 ,
theminimumover all contributing tuples’ timestamps, and similarly,
𝑡max = max𝑖 𝑡𝑖 . By definition of the clique, 𝑡max − 𝑡min < 𝜔 and
𝑡min ≤ 𝑡𝑖 ≤ 𝑡max for all 𝑖 . Thus, [𝑡min, 𝑡max] satisfies the definition
of 𝐼 . □

We now prove Theorem 4.1.

Proof. We will show that the omission of one tuple cannot lead
to a false negative and generalize inductively. Consider a query
(⊲⊳𝑖 𝑆𝑖 ) ⊲⊳ (⊲⊳ 𝑗 𝑅 𝑗 ) where subquery (⊲⊳𝑖 𝑆𝑖 ) is a clique (the 𝑅 𝑗

need not form a clique). Let the neighborhood of stream 𝑆1 be the
clique (⊲⊳𝑖 𝑆𝑖 ). Thus, 𝑆1 does not join directly with any 𝑅 𝑗 . Pick
an arbitrary join output (⊲⊳𝑖 𝑠𝑖 ) ⊲⊳ (⊲⊳ 𝑗 𝑟 𝑗 ). For each 𝑖 , let 𝑡𝑖 be the
timestamp of tuple 𝑠𝑖 . By Lemma 4.2, there exists an interval 𝐼 of
length 𝜔 where 𝑡𝑖 ∈ 𝐼 for all 𝑖 . Assume there exists a bracket on 𝑠1.
For both the above and below bracketing pair, at least one tuple from
the pair falls inside 𝐼 . Therefore at least one of the four bracketing
tuples (call it 𝑠 ′1) may replace 𝑠1 and (𝑠 ′1 ⊲⊳ (⊲⊳𝑖≠1 𝑠𝑖 )) ⊲⊳ (⊲⊳ 𝑗 𝑟 𝑗 )
will still raise the alarm. Moreover, we know that no join predicate
between pairs of streams other than 𝑆1 has been violated since all
other base tuples have been held constant. This logic may be applied
inductively to any chain of omissions and subsequent replacements
within the same stream and agnostic of omissions and replacements
in other streams. Therefore, we need not worry about a replacement
tuple being replaced itself, so this will not cause false negatives and
the omission is safe. □

(a) Omitting 𝑢1 may lead to false negative.

(b) Omitting 𝑟1 or 𝑟2 is safe.

Figure 8: Near-clique join missing predicate (𝑅1, 𝑅2).

In a clique query the neighborhood of each stream is the entire
query. Thus Corollary 4.1.1 follows trivially. In Section 4.1 we dis-
cuss a scenario where a single join predicate is dropped from a
clique. Furthermore, note that the neighborhood of any peripheral
stream is automatically a clique subquery as the clique of size 2
only has one edge. The only difference is that cliques of size 2 allow
us to use intervals of double length in our omission policy (See
Footnote 1).

4.1 Near Clique
Consider the near clique query in Figure 8. Except for streams 𝑅1
and 𝑅2, all pairs of streams share a join predicate. Figure 8a shows
how a false negative can occur when omitting 𝑢1. The join tuple
𝑥 = 𝑟1 ⊲⊳ 𝑢1 ⊲⊳ · · · ⊲⊳ 𝑢5 ⊲⊳ 𝑟2 satisfies all join predicates and
thus should be passed to the threshold function. Assume 𝑥 would
trigger the alarm. Now suppose 𝑢1 is bracketed by tuples 𝑢 ′1 and 𝑢

′′
1

and hence omitted. Observe that 𝑢 ′1 joins with 𝑟2 but not with 𝑟1.
Conversely, 𝑢 ′′1 joins with 𝑟1 but not with 𝑟2. Thus, in this scenario
the omission of 𝑢1 due to the bracket 𝑢 ′1, 𝑢

′′
1 can lead to a false

negative.
On the other hand, omitting 𝑟1 is safe, because the neighborhood

of stream 𝑅1 is {𝑅1,𝑈1, . . . ,𝑈5}, which forms a clique. As depicted
in Figure 8b any bracket on 𝑟1 will necessarily leave at least one
replacement in the interval 𝐼1. Thus we may apply our omission
policy to 𝑅1. A similar argument holds for tuple 𝑟2.
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4.2 Multiquery Workloads
The consideration of mulitijoin streaming queries begs the question
of how to apply our omission policy in a multiquery setting. In this
scenario, the central processing node is executing multiple queries
and a stream may be an input to some or all of them.

Suppose each query is amenable to our omission policy individ-
ually. That is, it includes a threshold function applied to the join of
some stream inputs. Consider some stream 𝑆 . We will explain how
each query that takes 𝑆 as input enforces a minimal interval size
restriction on 𝑆 . Recall that the set of tuples that are maintained for
interval size 𝜔 is the set of all tuples for which there exists some
interval 𝐼 of length 𝜔 in which the tuple is minimal/maximal. I.e.
the set of all minimal and/or maximal tuples. Let this subset of
tuples be 𝑆𝜔 . For any tuple, if there exists an interval 𝐼 ′ of length
𝜔 ′ > 𝜔 in which the tuple is minimal/maximal, then there must
exist some interval 𝐼 ⊂ 𝐼 ′ which has length 𝜔 and in which the
tuple is still minimal/maximal. Therefore, the set of tuples that are
maintained for interval size 𝜔 is a superset of those tuples that
are maintained for any larger interval size 𝜔 ′ > 𝜔 . More formally,
𝜔 ′ > 𝜔 =⇒ 𝑆𝜔′ ⊆ 𝑆𝜔 . Thus, the shorter the interval size, the
more tuples we have to maintain to guarantee no false negatives.
This implies that if we have two queries both operating on some
stream 𝑆 , it suffices to maintain the necessary tuples to whichever
query is applying the smaller interval size, i.e. the more restrictive
query. By the argument above, all necessary tuples for the less re-
strictive query are maintained as a byproduct of maintaining tuples
for the more restrictive query.

If the query is a simple join of two streams and computes a qua-
siconvex function with respect to both inputs, then both streams
must maintain min and max values for any interval of length 2𝜔
where 𝜔 is the pairwise distance bound to guarantee no false neg-
atives. If the query is a clique join of three or more streams, then
all streams must maintain min and max values for any interval of
length 𝜔 (see footnote 1). If the query is a non-clique multijoin,
then any stream whose neighborhood is a clique must again only
maintain min and max values for any interval of length 𝜔 , where 𝜔
might differ from one query to the next. Finally, for any stream 𝑆 ,
if there is a query 𝑄 whose threshold function is not quasiconvex
with respect to 𝑆 or if 𝑆’s neighborhood in 𝑄’s join graph is not a
clique, then we will need to maintain every tuple from 𝑆 . That is,
the query enforces a length 0 interval size restriction.

For each stream, it suffices to maintain a subset of tuples cor-
responding to the narrowest interval size restriction. This is dis-
appointing since the existence of less restrictive queries in the
workload will not help us to reduce overall maintained state; the
DSMS will still need to maintain the necessary tuples for the most
restrictive query. However, this is also a "best case scenario" as
maintaining the bare minimum amount of state to satisfy the most
restrictive query will be sufficient for all other queries and would
be required to evaluate that strict query anyway. That is, the less
restrictive queries do not incur any extra work beyond what is
required for the most restrictive query.

5 CERTIFYING QUASICONVEXITY
Ensuring a function is linear or monotonic step is simple but re-
quires a restrictive user interface. On the other hand, general ver-
ification of quasiconvexity is difficult. Simple functions may be
rewritten in innumerable complex but still equivalent ways. Even
normal convexity is difficult to verify since there is no generic base
formulation with which all convex functions may be written. In
fact, checking the convexity of just polynomials is NP-hard [6].

One imprecise solution is to evaluate the function at every point
in a discretization of the domain and check to see if quasiconvexity
holds for those points. For the motivating example, this involves
evaluating Equation 1 for each point (𝑠, ℎ, 𝑎) in some discretization
of [−273.15,𝑇 ] × [0, 1] × [−273.15,𝑇 ] where we choose 𝑇 to be a
reasonable upper bound on a temperature reading.

A further refinement is automatically detecting if the threshold
function is a (positive) linear combination of smaller sub-functions.
Each sub-function may then be certified against the cross product
of only those streams that appear in that sub-function. For the
motivating example, the sub-functions are:

𝜙1 = −𝑠, 𝜙2 = ln
(︃
ℎ

100

)︃
, 𝜙3 =

18.678𝑎
257.14 + 𝑎

This technique may be used to cut down on the exponential size of
the discretization: the exponent of the complexity of the evaluation
drops from the number of stream inputs to the number of streams
in the sub-function with the most stream inputs.

Even if one sub-function fails, our omission policy can still be
applied to some streams. It only discounts streams that were inputs
to the failed sub-function. For example, if 𝜙1 fails, but 𝜙2 and 𝜙3
succeeds, then we can still safely omit tuples from 𝐻 and 𝐴.

If the discretization is not sufficiently fine, then this test might
miss unsafe functions. In this scenario, small dips/spikes might ap-
pear between discretization steps creating the illusion of quasicon-
vex behavior. However, the expense of using a finer discretization
can be affordable, since this analysis need only be run once to test
the applicability of a function.

6 EVALUATION
In this section, we demonstrate the effectiveness of our omission
policy empirically. We first briefly describe our implementation,
then compare different tuple stores, and finally investigate raw
tuple retention.

6.1 Implementation Details
Many DSMS’s assume that the data is timestamp-ordered after
ingestion [14, 17]. In these cases, the first step in a query plan
is a stateful incremental sort operator that sorts the input during
ingestion [18]. With this in mind, we prototyped our omission
policy as an online sorting algorithm that also omits bracketed and
thus unnecessary tuples. We call it a threshold sorter. This design
allows us to plug the component easily into an existing DSMS. The
simplicity of the bracketing condition implies that the threshold
sorter requires only a few hundred lines of code to implement, not
including the skip-list implementation [25].
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6.2 Data Sets
We evaluate our method against both synthetic and real world data.
The synthetic data streams are comprised of (timestamp, value)
pairs where the timestamps are chosen uniformly at random from
time range [0,𝑇 ). The pairs are sorted into chronological order.
Values are drawn iid from a uniform distribution over some range.
We refer to such a dataset as “synth-uniform” or simply s-unif. Al-
ternatively, we may choose values non-independently. We simulate
samples from a Wiener Process where the time discretization cor-
responds to the already chosen random timestamps. We refer to
such a dataset as “synth-wiener” or simply s-wiener.

Disordered behavior may be introduced to a stream by adding
random noise to the timestamp to simulate disparity between event
time and processing time. We use Gaussian noise and vary the
standard deviation parameter to increase or decrease the degree
of disorder. The degree of disorder can be measured using the
“inversion” rate measure: the fraction of all pairs of tuples in the
stream that are disordered (i.e., inverted) [27]. Formally, given some
sequence of values 𝑥0, 𝑥1, . . . , 𝑥𝑛 , the inversion rate of the sequence
is defined as:

|{𝑖 < 𝑗 : 𝑥𝑖 > 𝑥 𝑗 }|
|{𝑖 < 𝑗}|

6.3 Tuple Store Comparison
We compare the performance of Algorithm 1’s greedy tuple reten-
tion policy using three different tuple store data structures: linked
list (LL), skip-list (SL)[28], and red-black trees (RB)[13]. All data
structures sort on timestamp with tuple values used to break ties.

LL offers worst-case linear search/insertion/deletion. However,
if the stream is in-order, then the algorithm needs to follow only a
single pointer to the tail of the linked list. By contrast, SL and RB
both offer logarithmic expected worst case complexity for search/in-
sertion/deletion.

Like LL, SL offers convenient lateral traversal over neighbors.
While RB also offers lateral traversal, there is potentially “wasted
work” in that some nodes in the tree represent tuples that are not
within the interval 𝜔 of the new tuple’s timestamp but need to be
traversed to reach tuples that are within the interval. (See the loops
starting at lines 19 and 31 in Algorithm 1.) Moreover, RB does not
support duplicate timestamps. Thus, the timestamps in synthetic
streams are drawn without replacement from the timestamp range.
In summary, we should expect SL to outperform LL and RB in the
presence of disordered tuples and underperform LL slightly if the
stream is perfectly in order.

The following experiments measure the time needed to process
each dataset without any data arrival latency. That is, each imple-
mentation ingests the streams sequentially and without any waiting
between sucessive tuples. We report the total time spent on the
stream. In each experiment the stream consists of 106 tuples with
timestamps drawn from the range [0, 107) (approximately 1 tuple
every 10 time units). The interval size is kept at a constant 100 units
for all experiments. With these parameters, approximately 40% of
all tuples are preserved after a full pass. Each experiment yields the
average runtime of 5 trials. Table 1 contains results and empirical
inversion rates.

Stream sigma inv rate LL SL RB
s-unif 0 (in order) < 10−6 0.727 1.184 4.565
s-wiener 0 (in order) < 10−6 0.753 1.247 4.824
s-unif 1 < 10−6 0.754 1.243 4.620
s-wiener 1 < 10−6 0.747 1.200 4.754
s-unif 10 < 10−6 0.768 1.232 4.821
s-wiener 10 < 10−6 0.787 1.254 5.058
s-unif 100 1.2 · 10−5 0.793 1.277 4.634
s-wiener 100 1.2 · 10−5 0.853 1.344 4.984
s-unif 1000 0.000111 1.031 1.373 4.801
s-wiener 1000 0.000102 1.113 1.440 4.861
s-unif 10000 0.001078 5.103 1.645 4.910
s-wiener 10000 0.001181 5.279 1.666 4.994
s-unif 100000 0.011324 84.341 2.594 6.036
s-wiener 100000 0.011216 80.047 2.522 6.131

Table 1: Stream processing times in seconds for linked-list
(LL), skip-list (SL), and red-black tree (RB) tuple store im-
plementations on synthetic datasets with varying Gaussian
noise standard deviation (sigma). Stream size 106, timestamp
range [0, 107 − 1), interval length 100.

While LL performs best for in-order streams, as the degree of
disorder increases LL performance suffers a sharp decline. In con-
trast, while SL lags behind LL due to higher bookkeeping costs of
the underlying tuple-storage data structure, the logarithmic probe
complexity leads to graceful performance degradation as the stream
becomes increasingly disordered. RB follows a similar performance
trend as SL with respect to degree of disorder in the stream but
consistently lags behind SL because it traverses more nodes than is
strictly necessary. Thus, if the stream is guaranteed to be in order,
LL is the obvious simple choice. However, if the stream might be
disordered, SL is the more resilient data store.

Another consideration is trimming data. Often streaming query
engines will drop data that is no longer relevant. This is the case
in normal operation when failures and network partitions are not
experienced. The engine assumes that no tuple will arrive with a
timestamp earlier than some punctuation. While SL and RB will
both find that cutoff point in logarithmic time, RB will have to
re-balance the tree after trimming. LL will again take linear time to
find the cutoff point. Both SL and LL can simply drop all tuples left
of the punctuation, a constant time operation. In this scenario SL
has a clear theoretical advantage over LL and RB.

6.4 Tuple Retention Savings
While the ability to deploy the algorithm is dependent on the join
topology and threshold function, the execution is entirely agnos-
tic of external streams. Thus to demonstrate how effectively our
omission policy reduces the state, it suffices to demonstrate it on
a single stream. We evaluate the effectiveness of our approach on
multiple streams as described below.
• DEBS 2012 Grand Challenge (DEBS) is a dataset consist-
ing of monitoring data from manufacturing equipment [24].
We demonstrate the effectiveness of our omission policy by
pairing the given timestamps with the value of column mf01:
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Figure 9: Retained tuples in the presence of significant time
gaps. Each retained tuple is paired with an interval in which
that tuple is maximal thus forcing the inclusion of the tuple.
Of the 15 total depicted tuples, we are forced to retain 10.

the electrical power main phase sensor reading. The stream
consists of just over 32 million tuples.
• Gamma-Wiener is a synthetic dataset consisting of 10 mil-
lion tuples. Timestamps start at 0 with each subsequent
timestamp adding an independent draw from a Gamma dis-
tribution. Values are taken from a Wiener process with the
discretization chosen with respect to the timestamps.

For each stream, we assume the value is an input parameter to
a quasiconvex threshold function. Recall that the specific nature
of the stream or any joining stream is irrelevant given that the
threshold function is quasiconvex. We wish to demonstrate that
the performance of our omission policy depends mostly on the
number of tuples that appear inside any given interval. As we vary
interval length, we expect the proportion of omitted tuples to vary
approximately linearly with respect to the average number of tuples
per interval.

Longer intervals are semantically more inclusive: one would
expect the true join output to grow exponentially with respect to
the interval length, where the exponent is the number of streams
being joined. However, longer intervals also lead to more base
tuples being omitted as the range of tuples that may comprise a
bracket grows. In the following experiments we omit tuples if they
are both above and below bracketed. See Figure 10 for results.

Results for Gamma-Wiener are noticeably uniform, because large
time gaps and longer sustained shifts in the value parameter are
less likely. For very narrow intervals, the true number of tuples per
interval is exceedingly small. Hence the fraction of retained tuples
over total tuples is very high (lefthand side of Figure 10a), while the
average number of tuples that are retained per interval is very low:
there just are not enough tuples per interval. However, once the
total tuples per interval grows to about four, the fraction of retained
tuples drops dramatically. This trend is most easily understood in
Figure 10b where the average number of retained tuples per interval
for Gamma-Wiener flat-lines at four. Given that we omit a tuple
when it is above and below bracketed, this average of four tuples
per interval is not surprising. Each omitted tuple requires one above
and one below bracket. If one draws a loose connection between an
omitted tuple and an interval it represents, the four points in the
above and below bracket are the four retained tuples per interval.

Results are less uniform for DEBS. Unsurprisingly, when inter-
vals are exceedingly narrow and on average few tuples appear for
any given interval, the fraction of total retained tuples stays close
to one as there are rarely enough close neighbors to form a bracket.

(a) Total tuple retention.

(b) Average per interval tuple retention.

Figure 10: Tuple retention varying interval length.

Notice that DEBS begins omitting tuples at a lower average
tuple density than Gamma-Wiener. This is because the timestamp
distribution for DEBS is highly skewed with large gaps between
clusters of timestamps.

Clustering tuples increases the probability of forming brackets
and omitting tuples. While this timestamp skew helps at lower
density, it actually does the opposite at higher average tuple den-
sities. Observe in Figure 10b that DEBS seems to level off around
8 retained tuples per interval. This is partially because the large
timestamp gaps create boundary effects that force us to retain dis-
proportionate numbers of tuples just before and just after these
gaps. Simply put, the lack of tuples in a time gap often eliminates the
ability to construct brackets forcing us to retain more tuples. Thus,
disproportionately many tuples are retained near the boundaries
of time gaps. An example scenario is in Figure 9.

As we increase interval length, often these gaps may be bridged
and the time gap boundary retained tuples decrease proportional
to the total tuples per interval. This is characterized as the slight
downward trend in average retained tuples per interval for DEBS
between 27 and 211 tuples per interval. However, as intervals grow
but still fail to bridge larger gaps, many time gap boundary retained
tuples remain. Thus the number retained tuples per interval also in-
creases proportionately. This explains the spike in average retained
tuples per interval for DEBS on the right hand side of Figure 10b.
However, at this point the average tuples per interval is very large
making this scenario unlikely in practice.
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7 RELATEDWORK
Although we are unaware of any existing work on our specific
problem of threshold queries over streaming joins, we have found
similar scenarios in the literature where our proposed techniques
may have potential applications.

7.1 Load Shedding
One closely related area of research is load shedding, where tuples
are dropped (sometimes at random) to prevent overloading and
hence increased latency [12, 19, 34]. One can view our omission
policy as a theoretically optimal form of load shedding.

Dropping tuples randomly leads to an obvious trade-off in query
answer degradation. Past work has often focused on how to imple-
ment this degradation gracefully, generally in response to “bursty”
stream behavior overwhelming the system. In contrast, our omis-
sion policy does not depend heavily on the tuple input rate except
in the corner case where there exist large time gaps. In this sense,
our method is robust to these bursty scenarios; we never need to
tweak any sampling rate.

Our omission policy and traditional load shedding are not mutu-
ally exclusive. A simple method of combining the two is a simple
two phase omission policy. If the system is still overwhelmed af-
ter omitting bracketed tuples, tuples may be dropped randomly to
improve performance further. This hybrid approach is a possible
topic of future work.

7.2 Local Geometric Constraint Thresholding
Another line of related research focuses on multiparameter thresh-
old functions over distributed data [29]. Unlike our work, it preag-
gregates the data with respect to each object and compute node
and does not explicitly join on timestamps. For instance, vector 𝑥 𝑗,𝑖
corresponds to some subset of the data corresponding to object 𝑗
and living at node 𝑖 . The full vector describing object 𝑗 is The full
vector describing object 𝑗 is 𝑥 𝑗 =

∑︁
𝑖 𝑥 𝑗,𝑖 . The threshold function

is applied to 𝑥 𝑗 . In order to avoid a full distributed aggregation
to find objects that trigger this threshold the authors describe an
algorithm for generating bounds local to each node using geometric
constraints of the parameter vector space. These local geometric
constraints were first highlighted by Sharfman et al. [30, 31]. They
generalize this method from exclusively monotonic to functions
that may be expressed as the difference of monotonic functions—a
class of functions that subsumes the set of globally quasiconvex
functions. Giatrakos et al. expand on this local geometric constraint
theme by incorporating predictors to further reduce the number
of system synchronizations that need to be performed [20]. Their
approach relies on individual nodes reliably predicting the “drift” in
vector values in neighboring nodes since the most recent synchro-
nization. This introduces a trade-off space between system load and
query answer quality similar to many load shedding algorithms.

7.3 Analytic Functions over Data Streams
Most commercial streaming and time-series database systems now
support analytic functions over data streams or time series. For ex-
ample, TimescaleDB [5], a time-series database built on top of Post-
greSQL, offers simple analytic functions such as first(), last(),

and so on. The recently launched Amazon Timestream [1], a server-
less time-series database hosted on Amazon AWS, supports more ad-
vanced functions such as computing the cosine similarity of two vec-
tors. The query language of InfluxDB [4] provides an even richer set
of functions for time-series analysis, such as holt_winters() [3].
Although the query language reference manuals of these systems
do not provide specific examples, it is straightforward to write
queries that apply thresholds on top of such analytic functions.

7.4 Time-Series Analysis
Thresholding has been a common technique in time-series analysis
for various applications. For example, threshold models, a popular
class of nonlinear models in time-series analysis, have been around
for decades [35]. The basic idea is to use different models for dif-
ferent parts of a time series that are above or below a threshold.
Another example is threshold-based data mining [9, 10], which uses
threshold queries for similarity search over time-series data. The
idea is to truncate time series using a threshold, and then measure
similarity between (two) time series using a distance function that
only considers the intervals above the threshold. One may express
such distance computation using timestamp-based, streaming joins.

7.5 Streaming Joins
Joins over two ormore streams have become increasingly popular in
real-world applications. As a result, stream processing systems, such
as Apache Spark Structured Streaming [8], Apache Flink [14], and
Microsoft’s Azure Stream Analytics [2], recently started supporting
streaming joins. One common technique implemented by existing
systems is the symmetric hash join algorithm (and an analogous
symmetric nested-loop join algorithm) [21, 22, 26, 38], which has
to buffer join states in main memory. This raises challenges in
applications where the size of join states can be extremely large.
Specialized systems, such as Google’s Photon [7], have been built
to deal with such cases. Our technique provides another novel
perspective on reducing the amount of join state to be kept.

7.6 Stream Query Optimization
There has also been quite a bit of work on the query optimization
side of stream join processing. For example, Viglas and Naughton
proposed cost models for both nested-loop join and symmetric
hash join in the streaming context with the goal of maximizing the
query output rate, which can be easily integrated into classic query
optimization frameworks such as ones that are based on dynamic
programming [37]. Ayad and Naughton [11] further proposed a
query optimization framework for conjunctive queries over data
streams that considers resource constraints. There are various other
optimization techniques for stream query processing in general,
such as operator separation, fusion, and reordering (see [23] for
a survey). It would be interesting future work to consider the in-
teraction between our technique and existing query optimization
techniques. For instance, if an input stream of a join is the output
stream of a subquery, then we can perhaps push down our tuple
omission strategy into input streams of that subquery.
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7.7 Stream Memory Management
There has been work on systems-oriented techniques for memory
management, for example, offloading operator state in SEEP [15]
and Google Cloud Dataflow [16]. These techniques are orthogo-
nal to our approach, which exploits query semantics for reducing
memory. Memory reduction techniques have been applied in the
context of specific operators such as aggregates over sliding win-
dows [33, 36]; our work uses a similar flavor in the context of state
reduction for join queries.

8 CONCLUSION
In this work we showed how to omit tuples when evaluating a
threshold function over the joins of streams. We defined bracketing,
a simple local condition that is sufficient to omit tuples from a
stream. We also provided a complementary greedy algorithm for
exploiting brackets and showed the algorithmmay be safely pushed
down to the stream emitter so that the benefits of reduced state
may be enjoyed across the entire data stream management system.
We proved the greedy approach is globally optimal and generalized
it to multi-stream joins. Finally, we demonstrated the effectiveness
of our approach empirically by evaluating it against synthetic and
real world datasets.

This initial contribution opens the door to future work. The ques-
tion of automatically detecting and/or enforcing the applicability
of a threshold function is left open. While we provided a heuristic
pseudo-certification approach, a stronger threshold function analy-
sis technique would enable the application of our omission policy
to be safely abstracted away from the user. While our prototype
implementation demonstrates the potential of our omission policy,
stronger proof of its value would come from integrating it into a
production system and evaluating it there.
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