

Abstract—A web server is a software that allows clients to

connect to it using a well-defined protocol (HTTP) and retrieve
web content. The client is typically a browser such as Internet
Explorer or Mozilla. There are various design alternatives for
web servers, some of which include multi-threaded, thread-pool
based, and event-driven web servers. This paper describes the
development of two flavors of web servers – a multi-threaded
web server and a thread-pool based web server. A detailed
experimental performance analysis of the multi-threaded web
server is presented. The thread-pool based web server is also
evaluated comparatively. The web server is also compared to
Apache, a commercial-grade web server. Comparison of HTTP
1.0 and HTTP 1.1 is also discussed.

Index Terms—web, server, HTTP, performance, Internet

I. INTRODUCTION

HIS paper describes the design, implementation, and
performance evaluation of two designs of web-servers. A

web server is a software that allows clients to connect to it
using a well-defined protocol (HTTP) and retrieve web content.
The client is typically a browser such as Internet Explorer or
Mozilla. There are various design alternatives for web servers,
some of which include multi-threaded, thread-pool based, and
event-driven web servers.
 The rest of this paper is structured as follows. Section II
provides a brief overview of web servers and discusses the
motivation behind this project. Section III gives a detailed
account of the design and implementation of the multi-
threaded web server, while section IV does the same for the
thread-pool based web server. Section V presents the
experimental methodology and section VI explains the
experiments performed and results obtained. Section VII
discusses various aspects of the project, and section VIII
presents the conclusions.

This project was undertaken as a part of the advanced computer

networks course requirements at Duke University, under the guidance of
Dr. Adolfo Rodriguez.

II. OVERVIEW AND MOTIVATION

A. Overview

The web is perhaps the most important part of the Internet
today. The common protocol responsible for the web is the
HyperText Transfer Protocol (HTTP). The HTTP protocol
specifies how web clients (browsers) should talk to servers
and vice versa. Any server program that implements the HTTP
protocol is called a web server, and can be accessed by any
browser.

I have implemented two basic flavors of web servers in this
assignment – the multi-threaded web server and the thread-
pool based web server. The main focus of this project is on the
multi-threaded web server and its performance evaluation. A
comparison of the two types of web servers is also presented,
as is a discussion of the performance of HTTP 1.0 versus
HTTP 1.1. I also profiled the code of the web server to analyze
the time spent in various activities such as creating the socket,
setting socket options, binding, listening, processing the
request, etc.

B. Motivation

The project helped to understand network programming
techniques, and the issues that arise in the same. The
concurrency problems that can occur in a multi-threaded web
server are endless and their resolution needs a robust
programming methodology.

The main motivation behind this assignment was to
understand the HTTP protocol and implement the same. It
created an understanding of how diverse clients and servers
can easily interact and exchange information, just by defining a
complete and robust language for the interchange.

Another motivation behind this project was to investigate
the various factors that contribute to web server performance.
A popular web server may have to handle millions of client
requests of differing object sizes. A deeper understanding of
the issues and costs of various aspects of a web server would
immensely help in developing a robust web server.

Development and performance evaluation of multi-
threaded and thread-pool based web servers

Badrish Chandramouli
Department of computer science

Duke University, Durham NC 27708
badrish@cs.duke.edu

T

III. THE MULTI-THREADED WEB SERVER

The main focus of this assignment was in building a multi-
threaded web server. The web server was implemented in C++.
A server class is created for handling the main loop which
waits for incoming connections. The server first creates a TCP
socket and binds to it after setting the required options. For
each incoming connection, a new thread is spawned for
processing the same. The spawned thread creates an instance
of a HTTP handler (HttpHandler object) and tells it to take care
of the connection.

The server supports HTTP 1.0 as well as HTTP 1.1. It creates
persistent connections when the client requests a HTTP 1.1
connection. The connection is kept open for http_timeout
seconds, and if no request is received from the client in this
timeframe the connection is closed. The timeout value is
adaptive, based on the load on the server. For light loads, the
timeout stays at a constant configurable value. But, as the load
increases beyond a threshold, the timeout is reduced linearly
to compensate for the increased load. Any other function
(such as exponential) can easily be fitted into the system with
minor modifications.

The server has security features such as disallowing access
to directories outside the defined web server root. Compilation
instructions are provided in the included README.

IV. THE THREAD-POOL BASED WEB SERVER

A thread-pool based web server was also implemented in
C++. Since the design is object oriented, the main change
compared to the multi-threaded server was to replace the
Server class with a PoolServer class. A pool of threads is pre-
created by the server in order to process incoming requests.
Each incoming connection is accepted by exactly one thread in
the pool. This is accomplished using a mutex for accept within

each thread. Other than this, the server is quite similar to the
multi-threaded web server.

V. EXPERIMENTAL METHODOLOGY

A. The client

In order to test the HTTP server, I wrote a load generator in
C++. The load generator takes four arguments – the number of
threads to execute in parallel, the time duration of the
experiment, the file size (in bytes) to retrieve from the server,
and whether or not each thread’s connection to the server
should be persistent i.e. whether HTTP 1.1 or HTTP 1.0 should
be used. The client supports both versions of the HTTP
protocol. It spawns the specified number of threads and
repeatedly makes requests and reads responses for the
specified time duration.

B. Experimental Setup

 The server was run on a Sun-Blade-100 (Solaris) system
running the SunOS 5.9 operating system. The CPU speed of
the system was 500MHz and the machine had 512MB RAM.
The client was run on a Sun-Blade-150 (Solaris) system
running the SunOS 5.9 operating system. The CPU speed of
the system was 650MHz and the machine had 256MB RAM.
Both machines were on the same LAN.

VI. EXPERIMENTS AND RESULTS

I ran a number of tests under this configuration, to analyze
the performance of the web server. Following are the
experiments that I performed, along with the results.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load (# simultaneous threads)

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
ec

o
n

d
)

HTTP 1.0 HTTP 1.1
Fig. 1. Throughput (req/sec) vs. load for 8kb file size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1kb 2kb 4kb 8kb 16kb 32kb 64kb 128kb 256kb
File size

La
te

nc
y

(s
ec

s)

HTTP 1.0 HTTP 1.1

Fig. 2. Latency (secs) vs. file size

A. Measuring the saturation point

In this experiment, I kept the file size constant at 8kb, and
varied the load (number of threads) from 1 to 15. I then plotted
the throughput as measured by the client, for both HTTP 1.0
and HTTP 1.1. The intent was to determine the load at which
the server get saturated i.e. the point at which the server’s
throughput plateaus and the server is performing at its
maximum. The result is shown in figure 1. It is seen that the
server reaches its saturation point when three clients are
making requests simultaneously. The results were similar for
both HTTP 1.0 and HTTP 1.1, though HTTP 1.1 gave higher
throughput as expected.

B. Latency vs. file size

In this experiment, I varied the size of the file retrieved. The
load was kept at saturation (three client threads). The result is
plotted in figure 2. The x-axis shows the file size in bytes. We
see that for both protocols, the latency increases linearly with
file size (the graphs show exponential curves because the x axis
is logarithmic). Moreover, the performance of HTTP 1.1 is seen
to be better than HTTP 1.1. This is because HTTP 1.1 incurs
the overhead of creating and destroying the connection only
once per session. However, we also notice that as the file size
increases, the latencies of HTTP 1.0 and HTTP 1.1 begin to
coincide. This is because a large fraction of the overall latency
is for the transfer of the large file, and so the cost of
connection setup and destruction is not as important in the
overall latency.

C. Throughput vs. file size

In this experiment, I varied the size of the file retrieved and
plotted the server throughput in requests per second. The load
was kept at saturation (three client threads). The result is
plotted in figure 3. The x-axis shows the file size in bytes. We

see that for both protocols, the throughput decreases with file
size. Moreover, the throughput of HTTP 1.1 is seen to be
higher than that of HTTP 1.1. This is because HTTP 1.1 incurs
the overhead of creating and destroying the connection only
once per session. However, we also notice that as the file size
increases, the throughputs of HTTP 1.0 and HTTP 1.1 begin to
coincide. This is because a large fraction of the overall service
time is for the transfer of the large file, and so the cost of
connection setup and destruction is not as important, leading
the two throughputs to converge.

D. Throughput and latency vs. load for various file sizes

In this experiment, I varied the load from 1 to 15 for each of a
number of file sizes. For each experiment, I computed the
average throughput and latency of each request. Latency here
is measured from the time the client issues a request until the
time the response has been completely received by the client.
Throughput is the number of requests per second as seen by
the client. The results of this experiment are shown in figures 4
and 5. As seen, with increasing file sizes, the throughput
decreases and latency increases. Also, beyond the saturation
point, the throughput is more or less steady while the latency
increases linearly with increase in load.

E. Comparison of multi-threaded and thread-pool based
web servers

I compared the two types of web servers as follows. I kept
the file size constant at 8000 bytes, and varied the load from 1
to 15. The thread pool of the second server was kept at a size
of 10. The experiment was performed for HTTP 1.0. The results
are shown in figure 6. As seen in the figure, both server
perform similarly. However the thread-pool based web server
shows lesser fluctuations as compared to the multi-threaded
server. Also, its throughput is marginally higher. This can be

0

100

200

300

400

500

600

700

1kb 2kb 4kb 8kb 16kb 32kb 64kb 128kb 256kb

File size

T
h

ro
u

g
h

p
u

t (
re

q
u

es
ts

/s
ec

o
n

d
)

HTTP 1.0 HTTP 1.1

Fig. 3. Throughput (req/sec) vs. file size

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load (# simultaneous threads)

T
h

ro
u

g
h

p
u

t (
re

q
u

es
ts

/s
ec

o
n

d
)

1 byte 8000 bytes 64000 bytes 256000 bytes

Fig. 4. Throughtput (req/sec) vs. load for different file sizes (HTTP
1.0)

attributed to the fact that there is no overhead of creating and
destroying threads for each incoming connection.

F. Profile of server code

I instrumented the server code with logging information to
note the time taken in various stages of the request handling. I
wrote a Perl script to extract information from the logged data.
The resulting profile is shown in figure 7. As seen from the
figure, the majority of request service time is spent in opening
and ‘stat’ing the file (80%). This is because we are inundating
the server with requests, and the file system becomes the
bottleneck. Most of the time is spent trying to open and get
the statistics about the file before reading and sending the file
over the socket connection. I also profiled the cost of other
operations such as creation of socket, socket setup, binding
the socket, listening, etc. These were found to add minimal
overhead to the web server.

G. Comparison of my web server with a real one (Apache)

The Apache Project [3] is a collaborative software
development effort aimed at creating a robust, commercial
grade, feature rich, and freely available source code
implementation of a real web server. Apache accounts for more
than 55% of all web domains on the Internet. I compared the
performance of Apache with my web server by using the same
client. I installed the Apache httpd 2.0.48 on the same machine
on which my web servers were evaluated. The client machine
was also chosen to be the same as in the previous experiments.
The results of the comparison are shown in figure 8. We see
that for very low loads, my web server performs slightly better.
This is because my server is not as feature-rich as Apache and
hence its performance would be better. However for higher
loads, the performance of Apache is marginally better. This is
to be expected, as Apache is a commercial-grade server.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load (# simultaneous threads)

L
at

en
cy

 (s
ec

s)

1 byte 8000 bytes 64000 bytes 256000 bytes

Fig. 5. Latency (secs) vs. load for different file sizes (HTTP 1.0)

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load (# simultaneous threads)

T
h

ro
u

g
h

p
u

t (
re

q
u

es
ts

/s
ec

o
n

d
)

Muti-threaded server Thread-pool based server

Fig. 6. Throughtput (req/sec) vs. load for 8kb file size

0.008205544,
80%

0.000518394,
5% 0.001120309,

11%0.000462897,
4%

Read request headers

Open and stat file

Send response headers

Write file to socket

Fig. 7. Profile of each request handled (average time taken).

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load (# simultaneous threads)

T
h

ro
u

g
h

p
u

t (
re

q
u

es
ts

/s
ec

o
n

d
)

Muti-threaded server Thread-pool based server

Fig. 6. Throughtput (req/sec) vs. load for 8kb file size

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load (# simultaneous threads)

T
h

ro
u

g
h

p
u

t (
re

q
u

es
ts

/s
ec

o
n

d
)

Apache httpd 2.0.48 My multi-threaded web server

Fig. 8. Comparison of throughputs of Apache web server and my
multi-threaded web server.

VII. DISCUSSION

A. Effect of thread model on performance

The thread model can have an impact on web server
performance. If we have a basic multi-threaded server, it would
perform well under saturating load, but if the load is increased
too mu ch, the server will become slow and unresponsive. This
is because there is no limit to the number of threads spawned.
As a result, a large number of threads would be active and the
system will be overloaded. The latency for individual requests
will increase exponentially and the throughput will decline
rapidly. However, if we use a thread-pool based design for the
server, the problem of unbounded number of threads would be
eliminated. However, when the request rate increases beyond
the capability of the thread pool, queues will build up and the
latency will degrade. But, the bandwidth would not deteriorate
as in the multi-threaded case since the load of the threads
would be limited by the number of threads in the thread pool.
An event-based approach would be the best model, because it
would provide excellent isolation of various requests and
ensure that the performance degraded fairly and uniformly with
increasing load.

B. HTTP 1.0 versus HTTP 1.1 for varying RTT

For small round trip times, the difference between HTTP 1.0
and HTTP 1.1 would not be pronounced. This is because the
main advantage of HTTP 1.1 is the elimination of the tearing
and reestablishment of connections for each object being
requested. If the round trip time is small, the SYN-ACK
exchange sequence would not take much time and the
performance improvement of HTTP 1.1 would not be too much.
But as the round trip time increases, the contribution of
connection establishment and tearing to the overall latency
would increase, and hence HTTP 1.1 would perform better than
before compared to HTTP 1.0.

C. HTTP 1.0 versus HTTP 1.1 for varying file sizes

This was illustrated in figure 3. For small file sizes, the
relative time to establish and tear the connection would be
large as the file transfer itself is short. Hence HTTP 1.1 would
do very well as compared to HTTP 1.0. However, for large file
sizes the improvement would not be as apparent because the
request service time would be dominated by the file transmit
time and not the time for establishment/tearing of the
connection.

D. HTTP 1.0 outperforming HTTP 1.1

One situation in which HTTP 1.0 could outperform HTTP 1.1
is when we have a large number of requests from different
clients coming in to the server, and the requests are for just a
single object in the server. In case of HTTP 1.1, since the
connection is retained until the timeout, the thread would be

idle and unable to process any other new request. Moreover
the benefits of caching the connection are lost since the client
only desires a single object. In such a situation, HTTP 1.0
would outperform HTTP 1.1.

VIII. CONCLUSIONS

Two models of web servers were designed, implemented,
and evaluated in this project. It was found that HTTP 1.1
outperformed HTTP 1.0 in all the test scenarios that I
experimented with. A number of interesting results were
obtained and these were discussed in detail. The server code
was also profiled to determine the bottlenecks. The web server
performance was also compared to that of a commercial-grade
server (Apache). In conclusion, it is clear that web server
performance is of prime importance. It is necessary to design a
web server using a robust model so that performance does not
deteriorate with increasing load, and the web server is fair to all
clients in the event of overload.

REFERENCES
[1] L. L. Peterson and B. S. Davie. Computer Networks, A Systems

Approach. Morgan Kaufmann, 2000.
[2] W. R. Stevens. UNIX Network Programming. Prentice Hall, 1997.
[3] The Apache HTTP Server Project. Online http://www.apache.org,

1997.

